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Abstract. In recent years, medical datasets have expanded significantly,
offering great potential for the development of machine learning appli-
cations in the medical field. However, manual labeling of such data is
costly and poses a significant bottleneck to their utilization.
To address this issue, self-supervised learning (SSL) exploits the data
itself to learn embeddings that can be quickly adapted to downstream
tasks as needed.
In this work, we show the suitability of self-supervised learning tech-
niques, specifically masked autoencoders (MAE), to generate such em-
beddings from a large clinical dataset comprising 12,000 radiograph im-
ages from various anatomical regions.
By pre-training a MAE model on producing these high-quality embed-
dings, the need for labeled data in downstream tasks is substantially
reduced. This is evidenced by a linear classifier trained on representa-
tions from this MAE model achieving 84.58% top-1 accuracy on body-
part classification when using only 1% of data, marking a 7% relative
improvement over fully supervised training.
This pilot study thus establishes the foundation for applying the MAE
strategy to our own large-scale real-world radiograph dataset, compris-
ing 700,000 radiograph images, as well as evaluating on more complex
downstream tasks in future work.

Keywords: X-ray · Vision Transformer · Masked autoencoder · Pre-
training · Representation learning · Self-supervised learning · Scarce la-
bels.

1 Introduction

The recent increase in large medical datasets presents a significant opportunity
for exploitation by machine learning methods. However, this exploitation is hin-
dered by the labor-intensive and costly process of manual labeling, a necessary
step for training supervised learning models.

Self-supervised learning (SSL) emerges as a viable solution to this problem,
especially within the domain of medical imaging, where the quantity of unlabeled
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data typically far exceeds that of labeled subsets. SSL techniques can be further
partitioned into contrastive and autoassociative methods.
Although contrastive learning frameworks like SimCLR [1] significantly sur-
passed previous self-supervised and semi-supervised learning benchmarks on Im-
ageNet, we believe it is not a well-suited approach for learning representations
of medical images, due to the core principle of contrastive learning. The con-
trastive learning technique extracts representations by contrasting positive and
negative pairs of instances, which doesn’t require models to capture intricate
details that are typically present in medical images and oftentimes necessary for
more complex downstream tasks.
On the other hand, autoassociative learning techniques, like masked autoen-
coders (MAEs) [3], are trained to reconstruct their own input data. They lever
the inherent structure of the data to learn representations, and seem promising
candidates for generating embeddings that extract the fine-grained features of
medical images without explicit labels. These embeddings can then serve as a
foundation for various medical downstream tasks, potentially reducing their de-
pendency on large amounts of labeled data.

This study presents a pilot exploration of the efficacy of MAEs for pre-training
on a large radiograph dataset spanning various anatomical regions. We examine
the hypothesis that the MAE SSL strategy can significantly alleviate the label-
ing bottleneck in medical imaging by facilitating the generation of high-quality
embeddings from unlabeled data. By employing MAE pre-training on a corpus
of 12,000 radiograph images and subsequently testing the generated embeddings
on a downstream body part classification task, we demonstrate the potential of
this approach.
Our contributions are twofold: First, we establish the feasibility of MAE pre-
training for generating useful embeddings from a substantial radiograph dataset,
a critical step towards leveraging SSL in further large-scale medical image anal-
ysis. Second, we present preliminary evidence that these embeddings can signif-
icantly enhance model performance in downstream tasks with minimal labeled
data, thereby paving the way for further exploration into the applicability of
MAEs across more complex medical imaging challenges.

2 Related Work

2.1 Transformer Models

Attention Is All You Need [7] introduced the Transformer architecture as
a novel alternative to traditional recurrent or convolutional neural networks
(RNNs/CNNs). It relies solely on attention mechanisms, offering superior paral-
lelizability and training efficiency compared to existing models. The architecture
achieves state-of-the-art results in machine translation tasks and generalizes ef-
fectively to various applications.
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An Image is Worth 16x16 Words [2] extended the Transformer architecture
to computer vision with the Vision Transformer (ViT). This approach reshapes
2D images into sequences of flattened 2D patches, which are then fed into an
architecture of alternating multi-headed self-attention and MLP blocks.

Masked Autoencoders are Scalable Vision Learners [3] proposed Masked
Autoencoders (MAE) for image reconstruction, demonstrating their effectiveness
in achieving state-of-the-art accuracy in image classification and transfer learn-
ing tasks. The asymmetric encoder-decoder architecture involves an encoder that
operates only on unmasked patches and a lightweight decoder responsible for im-
age reconstruction.

Due to the proven effectiveness of this class of model architectures across multiple
domains, the Vision Transformer serves as one of our baseline models, and the
Masked Autoencoder serves as the base for our pre-trained models.

2.2 Self-supervised Learning in Medical Imaging

A Simple Framework for Contrastive Learning of Visual Represen-
tations [1] introduced SimCLR, another approach to learning visual represen-
tations. In contrast to the MAE presented in [3], SimCLR uses a contrastive
learning approach.

Self Pre-training with Masked Autoencoders for Medical Image Clas-
sification and Segmentation [9] applied Masked Autoencoders to the pre-
training of Vision Transformers for medical image analysis. The MAE aggregates
contextual information to infer masked image regions, enhancing the understand-
ing of interdependencies among anatomical structures crucial in the medical
image domain. The method involves pre-training a ViT on the same dataset
as the downstream task and fine-tuning with task-specific heads. Experimen-
tal results demonstrate significant enhancements in medical image segmentation
and classification performance compared to random initialization and traditional
ImageNet pre-training methods. Notably, MAE self-pretraining shows promis-
ing performance even on small-scale medical datasets, surpassing existing ap-
proaches, including ImageNet-transfer learning.

Self-Supervised Learning Application on COVID-19 Chest X-ray Im-
age Classification Using Masked Autoencoder [8] applied MAE for COVID-
19 chest X-ray image classification, showcasing superior performance with a self-
supervised approach. This method demonstrated remarkable efficiency even with
limited labeled data, highlighting its potential in medical image analysis.

This work builds upon these previous works, leveraging insights from self-supervised
learning, Transformer-based architectures, and their applications in medical imag-
ing to develop an efficient and effective approach for large-scale radiograph anal-
ysis.
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3 Method

3.1 Dataset and Preprocessing

This paper focuses on the IRMA radiograph dataset [5] and in this way serves
as a pilot study for later employing and extending the presented methods on the
larger MRI dataset (our own).

The IRMA Dataset is a compilation of anonymous radiographs, sourced from
routine procedures at the Department of Diagnostic Radiology at RWTH Aachen
University. The contained radiographs capture a diverse range of patient de-
mographics, imaging views, and pathological conditions, resulting in significant
variability in image quality. To facilitate uniform processing and analysis, all
images within the dataset have been standardized to a resolution of 224× 224.
The dataset is distinguished by its extensive classification schema known as the
IRMA code, which categorizes images into 193 distinct classes, spanning nine
different body regions. The labeled subset of the dataset comprises 12,677 ra-
diographs, each annotated with its corresponding IRMA code.

To prepare the IRMA data for subsequent deep learning tasks, we normalize
pixel intensities using the 0-1 min-max scaling technique, ensuring consistency
across all images.

The class distribution of the IRMA dataset is shown in figure 1. Due to very
limited available data in the whole body class, we drop it from the dataset, leav-
ing eight remaining classes.

3.2 Models

We evaluate multiple deep learning models on the classification and pre-training
tasks. For all base models, we use the standard implementations from their
introducing papers:

– ResNet50 Convolutional Neural Networks [4]: Utilized for body part
classification tasks due to their proven effectiveness in image classification.

– Vision Transformers (ViT) [2]: Investigated for both body part classifi-
cation and masked autoencoder (MAE) pre-training tasks.

– Masked Autoencoder (MAE) [3]: Employed for self-supervised pre-
training, enabling feature learning without explicit supervision.

For the linear probing of the pre-trained ViT MAE encoder, we explore different
aggregation methods for the encoded output sequence, including calculating the
mean values across the sequence, flattening it, and probing a learned CLS token.
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Fig. 1. The class distribution of the IRMA dataset clearly shows the lack of available
data in the whole body class, as well as a surplus of data for the chest class.

3.3 Training

We determine the learning rate for all model architectures by running a hyper-
parameter search across ten different learning rates and optimizing for the best
validation accuracy. The MAE model is tuned using the best validation loss.
All models are trained until convergence, by employing early stopping with a
patience of 10 epochs without improvement.

The weights of all base models (ResNet50, ViT and MAE) are initialized with
their default pre-trained ImageNet weights.

We use a train-validation-test split of (8000, 2000, 2600).

4 Results

We present the results of our experiments on the IRMA dataset, focusing on
masked autoencoder pre-training and bodypart classification as an example
downstream task.

4.1 Masked Autoencoder Pre-training

For the MAE pre-training task on the IRMA dataset, we evaluate the MSE
loss of the MAE reconstructions compared to the input radiographs. However,
the results of the pre-training should be judged by the quality of the resulting
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embeddings. Therefore, the results of the produced embeddings in the ensuing
downstream tasks are more informative on the success of the MAE pre-training
than the direct MSE loss.

The MAE model trained for 36 epochs before stopping due to no further im-
provement on the validation loss. It achieved a final test MSE loss of 0.002475.

4.2 Full Data Regime: All Models Achieve Similarly High Accuracy

For the body part classification task, we evaluate the top-1 accuracy of our
models on the IRMA dataset. Table 1 summarizes the results obtained from the
different model and pre-training configurations.

When using the total available data for training the models, they all achieve an
accuracy upwards of 96%, the ResNet50 even achieves 99.12%.

Table 1. Body Part Classification Results on the full IRMA dataset. Although all
models achieve high accuracies, the ResNet50 model performed best.

Model IRMA Top-1 Accuracy
ResNet50 0.9912
ViT 0.9685
ViT MAE Linear Probing (Flattened) 0.9604
ViT MAE Linear Probing (Mean) 0.9688
ViT MAE Linear Probing (CLS) 0.9692

4.3 Low Data Regime: MAE Outperforms Supervised ViT

In the low data regime of the body part classification task, we evaluate the top-1
accuracy of our models on the IRMA dataset, with a training set that is limited
to only 1% of its original size, comprising only 80 images. Table 2 summarizes
the results obtained from the different model and pre-training configurations.

While the ResNet50 model achieves a leading accuracy of 99.12% when trained
on the full data, it produces less accurate predictions than all other models
(44.08% vs. 79.08% and above), when trained on only 1% of the data. In contrast
to this, the ViT is very data efficient, still achieving 79.08% with only 1% of the
training data. However, the pre-trained MAE models with a linear classification
layer on top outperform these two baseline models, with accuracies of 83%,
83.12% and 84.58% respectively. This five percentage point increase in accuracy
shows the advantage of learning in an unsupervised manner over large datasets
when minimal labels are available.
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Table 2. Body Part Classification Results in Low Data Regime. The pre-trained models
outperform the supervised models by five percentage points.

Model IRMA Top-1 Accuracy (Low Data)
ResNet50 0.4408
ViT 0.7908
ViT MAE Linear Probing (Flattened) 0.8300
ViT MAE Linear Probing (Mean) 0.8312
ViT MAE Linear Probing (CLS) 0.8458

5 Further Research

While the IRMA dataset allowed for comparatively easy data handling and fast
training runs, the MRI dataset is almost two magnitudes larger. Several new
challenges arise due to the extensive nature of the MRI dataset, offering several
new directions for further research to explore.

One such challenge revolves around processing images with high variability in
sizes using the same model. While Transformer architectures are inherently well-
suited for handling inputs of different sizes, training in batches requires intra-
batch images to be of the same dimensions. Addressing the resizing or grouping
of images into batches thus poses a significant research challenge.
To effectively utilize the variable-sized MRI dataset for deep learning tasks,
custom batching strategies can be implemented and explored. Inspired by the
VariViT paper [6], one approach is to extend their custom batching strategy
(called strict binning here) by a smart binning strategy. With the original strict
binning strategy, batches are sampled from all images of the same size. However,
the exceptionally high variability of image sizes present in the MRI dataset forces
this strategy to inevitably discard a lot of images as there aren’t enough images
of the same size to build a whole batch from, even with small batch sizes. The
smart binning strategy thus defines a few image sizes as bins and assigns each
image to the bin that matches its original size the closest. In order to sample
batches, all images are resized to match their bin’s shape, thus having compatible
dimensions.
Another challenge is the high computational cost associated with training on the
entire dataset. There are several ways to tackle this challenge. For instance, com-
putational cost can be cut down by minimizing the amount of compute spent on
uninformative black borders resulting from resizing images to a common resolu-
tion and aspect ratio. This optimization can be implemented by further optimiz-
ing the previously described binning strategy for batch processing with varying
image resolutions or by employing a sophisticated masking strategy within the
MAE to automatically mask or discard tokens corresponding to black borders.
A more basic but nonetheless important challenge is the speed at which data
processing and loading are performed, considering the impracticality of storing
the entire dataset locally. Exploring advanced offline data preprocessing as well
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as loading and caching techniques can be further directions of research.

The scarce labels setting can also be a focus of further research, coming up with
new ways to use or augment the few existing labels, especially in the context
of medical imaging datasets. One possible approach is employing NLP methods
for generating pseudolabels from medical reports typically accompanying the
radiographs.
Finally, more complex downstream tasks are required in order to better evaluate
the suitability of MAEs in the field of medical imaging.
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