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Motivation & Goals

● GWAS: Investigate the effect of common variants on traits and diseases

● Functional Gene Embeddings: Numerical vectors capturing gene functions

● Goal: Generate useful representations of genes for downstream tasks

● Evaluate quality of embeddings on GWAS signal prediction
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Data Description

1. GTEx

2. Tabula Sapiens

3. DepMap Gene Effect

4. RNA Isoform
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Data Description

GTEx, The Genotype-Tissue Expression:

● Collected samples from non-diseased tissue across many individuals (50k x 11k dense matrix)

         Tabula sapiens:

● Contains single cell transcriptomics data of 483,152 cells across 58,870 genes.
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Data Description

DepMap Gene Effect dataset:

● Scores that measure the effect size of knocking out a gene.
● Measure the dependency between genes and cell lines of  around 17k genes and 500 cell 

lines.

RNA Isoform Dataset:

● It contains RNA levels in 32 tissues, based on RNA-seq.
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Data Description

Data Approach:

● All of the datasets were aggregated based on unique Ensembl gene IDs and subsetted 
according to the protein-coding genes (Around 19k genes).

● GTEx was cut over samples and the Autoencoder was trained over only 5k samples.

● Tabula Sapiens was aggregated by cell ontology classes (Pseudo bulks).
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Methods
1. Generating functional gene embeddings

a. Principal Components

b. Autoencoder

c. Variational Deep Tensor Factorization Model

2. Evaluating the utility of functional gene embeddings
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Method – Generating Embeddings – Principal Components 
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● Principal components that could explain 80-95 percent of variance 



Method – Generating Embeddings – Autoencoder
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● Basic structure of an autoencoder

● Latent Space: the compressed representation is extracted and serve as 
information-dense embeddings of the genes



Method – Generating Embeddings – Variational Deep 
Tensor Factorization Model
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● Basic structure of Variational Deep Tensor Factorization Model1

● Training the gene and sample embeddings to reconstruct the data matrix
1.F. Brechtmann, T. Bechtler, S. Londhe, C. Mertes, and J. Gagneur, “Evaluation of input data modality choices on functional gene embeddings,” NAR Genomics and 
Bioinformatics, vol. 5, no. 4, p. lqad095, 2023.



Method – Evaluating the Embeddings – GWAS Signal 
Prediction

● Evaluate the utility of gene embeddings by using them as gene features to 
predict genome-wide association study (GWAS) summary statistics, and 
investigating how they could improve the accuracy scores.

● General process of the evaluation on 30 traits.

13



Method – Evaluating the Embedding – GWAS Signal 
Prediction – Details

● Prediction model: linear regression and XGBoost regression
● Traits considered: 30 traits, mostly maximally independent (see the Supplement)
● Covariates: gene density, effective gene size, inverse of the mean minor allele count of 

SNPs in the genes, as well as logarithmic values of them
● Cross validation strategy: Leave-One-Chromosome-Out
● GWAS data sources: 

○ The Pan UKB study1 
○ The UKBiobank2  
○ The publication results of Brechtmann et al3
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Results

1. Embedding Results

2. Significant Differences between Full and Null Models

3. Directly Examining ΔR²

4. Well-Predictable Traits Improve More with Additional Data

5. Which Embeddings work Well on which Traits?

6. Evaluating with Linear Regression
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Embedding Results
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Table: Eleven embeddings from three different architectures and four 
different data sources.

● Eleven embeddings from three architectures and four data sources.

● XGBoost Regression Model: Better general results (R²) and more interesting analyses



17

R
²

Embedding

Significant Differences 
between Full and Null 
Models

Comparatively strong improvements with 

Omics and GTEx embeddings.

Wilcoxon Signed-Rank Test:

● Significant differences (α = 0.05)

● Bonferroni Correction (α ≈ 0.0042): 

still significant

https://symbl.cc/en/03B1/
https://symbl.cc/en/03B1/
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Directly Examining ΔR²
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● Omics and GTEx strongest

● RNA and TS embeddings also 

increased R² for most traits

● DepMap and VDTFM embeddings of 

TS didn't improve R² on most traits



Well-Predictable Traits Improve More with Additional Data
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Well-Predictable Traits Improve More with Additional Data
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Which Embeddings 
work Well on Which 
Traits?

● VDTFM didn’t help 

across datasets

● Some traits didn’t 

improve (e.g. 

Lipoprotein A)

● Others greatly 

improved through 

GTEx and Omics (e.g. 

SHBG)



Evaluating with Linear Regression
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● Almost all embeddings perform 

worse

● Exception: DepMap, but still 

only slight increase

● Omics robust against 

regression model selection

● RNA Autoencoder also robust 

in both setups, but not as good

● Hypothesis: Assumptions of 

linear regression model might 

not hold



Further Research

1. Comparable Dimensions of Embeddings

2. Embeddings Generated from VDTFM

3. Combining Embeddings from Different Data Sources

23



References
[1] F. Brechtmann, T. Bechtler, S. Londhe, C. Mertes, and J. Gagneur, “Evaluation of input data modality choices on functional gene embeddings,” NAR Genomics 
and Bioinformatics, vol. 5, no. 4, p. lqad095, 2023.
[2] A. Tsherniak, F. Vazquez, P. G. Montgomery, B. A. Weir, G. Kryukov, G. S. Cowley, S. Gill, W. F. Harrington, S. Pantel, J. M. Krill-Burger, et al., “Defining
a cancer dependency map,” Cell, vol. 170, no. 3, pp. 564–576, 2017.
[3] G. Consortium, “The gtex consortium atlas of genetic regulatory effects across human tissues,” Science, vol. 369, no. 6509, pp. 1318–1330, 2020.
[4] M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, Å. Sivertsson, C. Kampf, E. Sjöstedt, A. Asplund, et al.,
“Tissue-based map of the human proteome,” Science, vol. 347, no. 6220, p. 1260419, 2015.
[5] T. T. S. Consortium*, R. C. Jones, J. Karkanias, M. A. Krasnow, A. O. Pisco, S. R. Quake, J. Salzman, N. Yosef, B. Bulthaup, P. Brown, et al., “The tabula sapiens: 
A multiple-organ, single-cell transcriptomic atlas of humans,” Science,
vol. 376, no. 6594, p. eabl4896, 2022.
[6] M. Wainberg, R. A. Kamber, A. Balsubramani, R. M. Meyers, N. Sinnott-Armstrong, D. Hornburg, L. Jiang, J. Chan, R. Jian, M. Gu, et al., “A genome-
wide atlas of co-essential modules assigns function to uncharacterized genes,” Nature genetics, vol. 53, no. 5, pp. 638–649, 2021.
[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
[8] L. Biewald, “Experiment tracking with weights and biases,” 2020. Software available from wandb.com.
[9] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation hyperparameter optimization framework,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
[10] Pan-UKB team, “Pan-uk biobank,” 2020.
[11] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, J. O’Connell, et al., “The uk biobank resource
with deep phenotyping and genomic data,” Nature, vol. 562, no. 7726, pp. 203–209, 2018.
[12] C. A. de Leeuw, J. M. Mooij, T. Heskes, and D. Posthuma, “Magma: generalized gene-set analysis of gwas data,” PLoS computational biology, vol. 11, no. 4, p. 
e1004219, 2015.
[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, KDD ’16, ACM, Aug. 2016.

24



Thank You for the Attention… 
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Supplement 

● Traits selected in GWAS Signal Prediction
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