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2 DATASETS

Abstract
Functional gene embeddings, numerical vectors capturing gene functions, can pro-
vide useful representations of genes for downstream analyses. In this project, we
extracted functional gene embeddings from transcription data and other genome-
wide measurements by using principle components, autoencoders and a Variational
Deep Tensor Factorization model. We used these embeddings, as well as embed-
dings from other publications, as gene features in the prediction of genome-wide
association study summary statistics for a diverse set of traits and compared their
performances. We found that some embeddings could improve the predictions to
an extent and compared the impact of using different datasets and embedding-
generating architectures.

1 Introduction

A recent study by Brechtmann et al. [1] has shown that the utilization of functional
gene embeddings can help with downstream analysis tasks such as disease-gene
list prediction, human phenotype ontology prediction, and genome-wide association
study (GWAS) signal prediction. This study inspired us to recreate part of it and
at the same time include new data sources and embedding-generating models. We
generated functional gene embeddings using three approaches based on four datasets,
and evaluated the utility of these embeddings in the prediction of GWAS signals of
various traits.

2 Datasets

We considered 19,190 human protein-coding genes in total and used the Ensembl
gene IDs as their unique identifiers. We used four different datasets to extract
functional gene embeddings: the DepMap dataset [2], the GTEx dataset [3], the
RNA isoform dataset [4], and the Tabula Sapiens dataset [5].

2.1 DepMap Dataset

The gene effect data from the Cancer Dependency Map Project Achilles 18Q3 re-
lease [2] contains CERES scores for 17,585 genes across 485 different cancer cell
lines, which measure the dependency between genes and cell lines. We subsetted
the dataset according to the aforementioned protein-coding genes, resulting in 16,445
genes and 485 cell lines in total.

For bias correction and to avoid multicollinearity, we followed the preprocessing
procedure introduced by Wainberg et al. [6].

2.2 GTEx Gene Expression Dataset

The Genotype-Tissue Expression (GTEx) [3] project is a continuous project aimed
at creating a complete public tool for researching gene expression and control in
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different tissues. The dataset contains gene expression data from various human
tissues across individuals. The samples were collected from 54 non-diseased tissue
sites across nearly 1,000 individuals. Since the dataset consists of a big number
of genes (+50k) and samples (+10k) and we ran into memory problems, we have
decided to subset over the samples in the dataset and train over only 5k samples.

2.3 RNA Isoform Dataset

The RNA Isoform dataset originates from the study of Uhlén et al [4]. We ob-
tained it from The Human Protein Atlas (https://www.proteinatlas.org/about/
publicationdata). It contains RNA levels in 32 tissues, based on RNA-seq. These
are measured as fragments per kilobase of transcript per million fragments mapped
(”FPKM”). We aggregated the dataset based on unique Ensembl gene IDs and sub-
setted it according to the aforementioned protein-coding genes, resulting in 18,831
genes and 124 subclasses representing the tissues.

2.4 Tabula Sapiens Dataset

The complete dataset from the Tabula Sapiens atlas [5] contains single cell tran-
scriptomics data of 483,152 cells across 58,870 genes.

In order to reduce computational cost and enrich information, we aggregated the
initially sparse dataset by cell ontology classes: the normalized count data of all the
cells from the same cell ontology class were summed together and normalized by the
total number of cells in that ontology class. Each aggregated cell ontology class is
called a pseudobulk. We then subsetted the dataset according to the aforementioned
protein-coding genes, resulting in 177 pseudobulks and 19,163 genes.

3 Methods

3.1 Generation of Functional Gene Embeddings

We considered three methods for generating functional gene embeddings from the
aforementioned data sources: the principal components, an autoencoder model and
a Variational Deep Tensor Factorization model [1].

3.1.1 Principal Components

We considered using the principal components of each dataset’s matrix as our base-
line embeddings. These principal components could explain 80−95% of the variance
in the datasets.

3.1.2 Autoencoder Model

An autoencoder is a type of neural network that is trained to accurately reconstruct
its input. The basic structure of an autoencoder is shown in figure 1.
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Figure 1: The basic architecture of an autoencoder.

The model consists of two parts, the encoder fe and the decoder fd. Given the
expression data xi of gene i across all samples in a dataset, the encoder first maps
xi to its compressed representation zi in the latent space, and then the decoder
maps zi back to reconstruct xi:

zi = fe(xi)

x′
i = fd(zi)

Because the latent space of an autoencoder is typically narrower than its input and
output space, the model has to condense the information of the input data in the
encoder in order to reconstruct it appropriately in the decoder. The condensed
latent representations {zi}i can thus be extracted and serve as information-dense
embeddings of the input data for downstream tasks.

The encoder and decoder of the autoencoder are multilayer perceptrons: Four to
six linear layers with batch normalization and ReLU activations in between. The
model’s parameters are trained and updated by minimizing the mean squared error
loss calculated between xi and x′

i. This is done by performing gradient descent
using the Adam optimizer [7]. The training process is visualized using Weights
& Biases [8], and the tuning of hyperparameters (including the number of layers
in the autoencoder, learning rate, batch size, number of epochs and latent space
dimensions) is done using Optuna [9].

3.1.3 Variational Deep Tensor Factorization Model

Furthermore, we eployed the Variational Deep Tensor Factorization Model (VDTFM)
introduced in the study by Brechtmann et al. [1]. The basic structure of a VDTFM
is shown in figure 2.

For a single modality, suppose the data matrix X has values xi,j, deriving from gene
i and sample j. The model learns embeddings of genes and samples to reconstruct
X. For each gene i, assume the embedding of gene i follows a normal distribution
with mean µi and standard deviation σi, and the embedding ai of gene i is given by
sampling from the normal distribution:

ai ∼ N(µi, σ
2
i )
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Figure 2: The basic architecture of a VDTFM.

For each sample j, assume the embedding of sample j is non-random and is given
by bj. Then, the reconstructed value x′

i,j is obtained by concatenating ai and bj

and applying a feed-forward neural network f to them:

x′
i,j = f(ai,bj)

The feed-forward neural network f is composed of three to six linear layers and
leaky-ReLU activations in between. The model’s parameters, the embeddings {µi}i,
{σi}i, and {bj}j are trained and updated by gradient descent using the Adam op-
timizer [7] minimizing the mean squared error loss calculated between xij and x′

ij.
The training process is visualized using Weights & Biases [8], and the tuning of
hyperparameters (including the number of layers in f , learning rate, batch size,
number of epochs and embedding dimensions) is done using Optuna [9].

Since the training of VDTFM included training three sets of embeddings and one
multilayer perceptron, the training process required much more computational power
than the training of the autoencoder or computing the principal components. There-
fore, in our project we only trained this model on the Tabula Sapiens dataset and
the DepMap dataset.

Also, in the study of Brechtmann et al. [1], a generalized Variational Deep Tensor
Factorization model was utilized to generate common variational gene embeddings
from multiple different data sources. We did not try this generalized model in our
project, but we used the outcome of the study, namely the Omics embeddings gen-
erated based on three omics datasets (obtained from https://academic.oup.com/

nargab/article/5/4/lqad095/7337624#supplementary-data), as the benchmark
embedding for our evaluations and comparisons of embeddings.

3.2 Genome-wide Association Study Signal Predictions

We evaluated the utility of our embeddings by using them as gene features to pre-
dict genome-wide association study (GWAS) summary statistics, following the steps
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taken in the study of Brechtmann et al. [1].

The Pan UKB study [10] (https://pan.ukbb.broadinstitute.org/) ran GWAS
for 7,228 phenotypes using the genotyping data from the UKBiobank [11]. Thirty
traits (most of them from the maximally independent 22 trait-set given by [1]) were
selected and their GWAS summary statistics were processed through MAGMA [12]
using the default parameters and the reference set provided by the PoPS team
(https://www.finucanelab.org/data). The selected traits are listed in Table
1. We used the MAGMA z-scores produced by the study of Brechtmann et al.
[1], obtained from www.cmm.in.tum.de/public/lecture/ml4rg/gene_embedding_

projects/.

Trait Max. ind.
set

Trait Max. ind.
set

Trait Max. ind.
set

Alanine Amino-
transferate

True Albumin True Apolipoprotein A True

Apoliprotein B True C-reactive Protein True Calcium 30680 True
Calcium 100024 True Cholesterol True Creatinine True
Direct Bilirubin False Glucose Flase HDL Cholesterol True
HDL False IGF-1 True LDL Direct Adjusted

by Medication
Flase

LDL Direct True LDLC False Lipoprotein False
MCH False Mean Corpuscular

Haemoglobin
False Phosphate True

RBC False Red Blood Cell Ery-
throcyte Count

False SHBG True

Testosterone Flase Total Bilirubin True Total Protein True
Triglycerides True Urate False Vitamin D True

Table 1: The 30 traits that were examined in GWAS Signal Prediction Evaluation.
Most of them are included in the maximally independent trait set.

For each trait, let y be the MAGMA z-scores of genes, which measure the gene-trait
association. To avoid the influence of the linkage disequilibrium between nearby
genes during the process of model fitting and prediction, we projected y to l using
a Cholesky decomposition of the covariance matrix that explained the linkage dise-
quilibrium, and use this projected l to do model fitting and prediction.

We first considered the null model f0 that predicts the MAGMA z-scores based
on six covariates C: gene density, effective gene size and inverse of the mean minor
allel count of single-nucleotide polymorphisms in the gene, as well as the logarithmic
values of them:

l0 = f0(C)

Then, we considered the full model f1 that predicts the MAGMA z-scores based on
these six covariates C and the gene embeddings X:

l1 = f1(C,X)

We considered two different model architectures for f0 and f1: linear models and
XGBoost regression models [13].

To evaluate the performance of our embeddings, we used Leave-One-Chromosome-
Out cross validation. For each of the 22 autosomes, the genes on it were held out for
evaluation and the rest of genes were used to fit the model. After fitting the models
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and computing the predictions of the held out genes, the predicted l′0 and l′1 were
projected back to y′

0 and y′
1. We evaluated the performances of the models by using

the square of the Pearson correlation coefficient, and evaluated the performances of
the embeddings by using the improvement of the Pearson correlation coefficient of
the full model upon the null model:

R2
0 = (ρy′

0,y
)2 = (

Cov(y′
0,y)

σy′
0
σy

)2,

R2
1 = (ρy′

1,y
)2 = (

Cov(y′
1,y)

σy′
1
σy

)2,

∆R2 = R2
1 −R2

0.

Genes that were not represented in a specific dataset, i.e. for which we could not
generate embeddings from that dataset, were imputed in the evaluation step, by
setting their GWAS signal prediction value to the mean target value. This was done
in order to balance out the unfair advantage of small datasets over bigger datasets
in the evaluation step.

4 Results

4.1 Generation of Functional Gene Embeddings

We created multiple functional gene embeddings from four different data sources, as
shown in Table 2. These different embeddings were then utilized for GWAS signal
prediction and compared against each other, as well as against the baseline null
model, predicting only on the basis of covariates.

Embedding Source Embedding-Generating Model or Method Dimension
DepMap Dataset Principal Components 81
DepMap Dataset Autoencoder 128
DepMap Dataset VDTFM 128
GTEx Dataset Principal Components 64
GTEx Dataset Autoencoder 128
GTEx Dataset Autoencoder 256
RNA Isoform Dataset Principal Components 4
RNA Isoform Dataset Autoencoder 32
Tabula Sapiens Dataset Principal Components 5
Tabula Sapiens Dataset Autoencoder 64
Tabula Sapiens Dataset VDTFM 256

Table 2: Functional gene embeddings of different dimensions were created from
multiple data sources.

4.2 GWAS Signal Prediction Results

The XGBoost regression model produced better general results (measured in achieved
R2-values) than the linear regression model and also lent itself to more interesting
analyses of the obtained results. Therefore, and due to space constraints, we only
analyse the XGBoost predictions in this report.
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4.3 GWAS Signal Prediction Using XGBoost Regression

For a direct comparison of the full models against their respective null models based
only on covariates, we plotted the GWAS signal predictions of the full models against
the predictions of the null models for all traits. This plot is shown in figure 3 for
a few selected embeddings (one per dataset). A full plot containing all embeddings
can be found in figure 7 in the supplement.

Figure 3: XGBoost Regression: Comparing predictions of the full evaluation model
(using covariates and embeddings) against the null evaluation model (using only
covariates) to determine the improvement on GWAS signal prediction per embedding
across all different traits. All embeddings are plotted in figure 7.

To further examine the influence of each embedding on the GWAS signal prediction
of different traits, we created a heatmap showing the improvement of the achieved
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R2-value of the full models over their respective null models (∆R2). This heatmap
can be seen in figure 4. It also serves as a way to compare different embeddings (i.e.
embedding-generating architectures and data sources) against each other.

Figure 4: XGBoost Regression: Heatmap, showing the improvement on the achieved
R2-values (i.e. ∆R2) for each embedding on each trait.

Another way to compare different embeddings against each other, is to compare the
distribution of their improvements on the R2-values per trait. This is shown in the
boxplots in figure 5, which already contains the ∆R2 of the full models against the
respective null models.

Furthermore, we tested for a significant difference between the distributions of
achieved R2-values across all traits (full models versus null models) using the paired
Wilcoxon signed-rank test (α = 0.05). The results showed that all differences were
statistically significant. In order to correct for multiple testing, we’ve also applied
Bonferroni correction by dividing the original α-value by the amount of tests per-
formed, leading to a new α∗ ≈ 0.0042. This didn’t change the significance of the
differences.
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Figure 5: XGBoost Regression: comparing the achieved improvement on R2-values
(i.e. ∆R2) of all embeddings across all traits.

4.4 GWAS Signal Prediction Using Linear Regression

For the GWAS signal prediction using linear regression, we did the same analyses
as for the XGBoost regression. Due to space constraints, we only included a figure
showing the distribution of improvements on the R2-values of all embeddings across
all traits in this report, as shown in figure 6.

5 Discussion

5.1 Findings based on XGBoost Regression

The scatter plots in figures 3 and 7 show that the R2-value could in general be most
improved for traits which already exhibited a high R2-value in the null model. This
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Figure 6: Linear Regression: Comparing the achieved improvement on R2-values
(i.e. ∆R2) of all embeddings across all traits.

might be linked to the fact that some traits are influenced more heavily by genetic
factors than others.

The heatmap in figure 4 highlights the improvement achieved through the different
embeddings for each trait. For example, it can be seen that in general, the Omics
and GTEx embeddings could increase R2-values the most. On the other hand, the
DepMap embeddings did not help to improve R2 on most traits. Furthermore, the
predictions of some traits were not improved by any embedding, like for example
Lipoprotein A. Others however, like the predictions of SHBG, were greatly improved
by the GTEx and Omics embeddings. It can also be seen that the VDTF model
didn’t help with improving the R2-values for most traits across datasets.

The boxplots in figure 5 again highlight the comparatively strong improvements
achieved by the Omics and GTEx embeddings. While the RNA and Tabula Sapiens
embeddings (except for the TS VDTF model) also increased the achieved R2-values
for most traits, all embeddings extracted from the DepMap dataset and the VDTFM
embeddings of the Tabula Sapiens dataset didn’t improve R2 on most traits.

Furthermore, the results of the paired Wilcoxon signed-rank test show that all dis-
tributions of R2-values differ significantly from the distribution generated by the
null evaluation model using only the covariates. In order to control the family-wise
error rate, we applied Bonferroni correction, but all differences remained significant.

5.2 Comparison between XGBoost and Linear Regressions

Figures 5 and 6 show different performances of embeddings between the linear re-
gression and XGBoost regression evaluation. While the GTEx embeddings help to
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improve the R2-values in XGBoost regression, they do not help much in linear re-
gression, the R2-values even decrease when including the embeddings. This is also
true for the Tabula Sapiens embeddings. The DepMap embeddings show better
performance in the linear regression evaluation than with XGBoost regression, but
still help little with improvements of the R2-values.

It’s worth to notice that the Omics embedding is robust against the regression model
selection, showing strong performances in both linear and XGBoost regression. Also,
the RNA-autoencoder-embeddings persist in showing relatively good performances
in both regression setups, being able to improve the R2-values on most traits.

To explain the different performances of embeddings between regression models, we
hypothesize that different regression models would prefer different input structures
and have different error (noise) handling methods. For example, the linear regression
model assumes a linear relationship between the response variable (projected z-score)
and the input (embeddings), with the error term following a normal distribution.
The GTEx embeddings might not satisfy these model assumptions and therefore are
not suitable to fit a linear regression model.

5.3 Further Research

We created various functional gene embeddings from multiple data sources, and
showed that they could be used to improve GWAS signal prediction to some ex-
tent. However, we encountered several challenges, which offer directions for further
research.

5.3.1 Comparable Dimensions of Embeddings

The dimensions of the embeddings were determined through hyperparameter tun-
ing, which means that for different data sources and embedding-generating methods,
the embeddings’ dimensions were different, complicating direct comparability.

For the autoencoder model, data sources with larger dimensions (e.g. the GTEx
dataset) had embedding dimensions up to 256, while data sources with smaller di-
mensions (e.g. the RNA Isoform dataset) had embedding dimensions of up to 32.
In the model training process, these embedding dimensions could both achieve good
reconstruction accuracy on test data (coefficient of determination at around 0.9).

However, in the GWAS signal prediction task, direct comparison between embed-
dings of different dimensions was complicated, because on the one hand, embeddings
of larger dimension might include more information on genes, but on the other hand,
embeddings of smaller dimension might contain more enriched information and in-
clude less noise.
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5.3.2 Embeddings generated from VDTFM

Figures 5 and 6 show that the embeddings generated from the VDTFM do not
lead to good performances in GWAS signal prediction. This might be because of
a mistake in specifying the embedding-dimension-ranges when training the model.
When we initially trained the model, we did not realize that we should choose
the embedding-dimension according to the datasets’ dimensions. We only consid-
ered embedding-dimensions 256 and 128, and did hyperparameter tuning. Later we
found that for datasets (such as the Tabula Sapiens dataset) with a relatively small
dimension, it would be better to consider smaller embedding dimensions, such as 32
or 64.

Because of time limitations of our project, we didn’t have the chance to try out a
broader range of embedding-dimensions for the VDTF model. We believe it would be
a promising direction for further research to explore a broader range of embedding-
dimensions for the VDTF model and investigate how the embedding-dimension in-
fluences the training of VDTFM, as well as performance in further downstream
tasks.

5.3.3 Combining Embeddings from Different Data Sources

One of our further experiments was concatenating promising embeddings in order
to obtain gene embeddings stemming from different data sources.

One such combined embedding consists of three extracted latent spaces from a GTEx
autoencoder, Tabula Sapiens principal components and RNA Isoform autoencoder,
each with an embedding dimension of 128, 32 and 5, respectively.

The choice of this combination was based on the performance of each embedding
when evaluated on its own. For almost all evaluated traits, the R2-values increased
slightly.

In further studies, more combinations could be tested. Another example of an
interesting, more comparable, result could be to sum up the dimension of the con-
catenated embeddings to exactly 256, making it directly comparable to the Omics
embeddings.
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Supplement

Figure 7 contains the direct comparison of the full models against the null models
for all generated embeddings.

Figure 7: XGBoost Regression: Comparing predictions of the full evaluation model
(using covariates and embeddings) against the null evaluation model (using only
covariates) to determine the improvement on GWAS signal prediction per embedding
across all different traits.
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