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Abstract

In recent years, medical imaging datasets have expanded significantly, offering great
potential for the development of machine learning solutions in the medical field. How-
ever, manual labeling of medical data is costly and poses a significant bottleneck to their
utilization. Self-supervised learning (SSL) techniques offer a solution to this problem
by extracting meaningful representations from the raw data itself, enabling label- and
compute-efficient training of specialized models for downstream tasks. In this work,
we demonstrate the effectiveness of SSL techniques, specifically the Masked Autoen-
coder (MAE) strategy, to generate such representations from a large-scale real-world
clinical dataset comprising more than 600,000 radiograph images from various anatom-
ical regions. We introduce a novel Dynamic Batch Binning technique that reduces
necessary compute by 80% when training on datasets with high image resolution vari-
ability. Our results across several clinically relevant downstream tasks show that the
generated representations substantially reduce the dependence on labeled data. This
is evidenced by superior performance when comparing to supervised training from
scratch. Furthermore, we demonstrate the efficacy of domain-specific pre-training by
achieving improved performance on the specialized medical task of fracture detection,
compared to broader ImageNet-21k pre-training, despite using only 5% of its training
samples and 0.5% of its training iterations during pre-training. Our research thus
demonstrates the potential of domain-specific MAE pre-training to significantly reduce
the need for labeled training data in the medical domain, enabling a more effective
utilization of large medical datasets with minimal labels.
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1 Introduction

The recent increase in large-scale medical imaging datasets presents a significant op-
portunity for exploitation by machine learning methods. However, this opportunity
is hindered by the labor-intensive and costly process of manual labeling by medical
professionals, a necessary step for training supervised learning models. Self-supervised
learning (SSL) emerges as a viable solution to this problem, particularly in the domain
of medical imaging, where the amount of unlabeled data typically far exceeds that of
labeled subsets. Pre-training, a common SSL technique, involves training a general
foundation model in a self-supervised manner on vast amounts of unlabeled data,
enabling it to extract meaningful representations from the inherent structure of the raw
data itself. After such a pre-training, this foundation model can then be fine-tuned in a
label- and compute-efficient way for specialized downstream tasks.

SSL techniques can be further partitioned into contrastive and autoassociative methods.
Although contrastive learning frameworks like SimCLR [Che+20] surpassed previous
SSL benchmarks on ImageNet [Den+09], we suggest that contrastive learning is not
the optimal approach to extracting useful representations from medical images. This
view is based on the core working principle of contrastive learning. The contrastive
learning technique extracts representations by contrasting positive and negative pairs of
instances, oftentimes leading the model to focus on global features instead of intricate
details that are typically present in medical images and necessary to take into account
for solving complex downstream tasks. In contrast, autoassociative learning techniques,
like Masked Autoencoders (MAEs) [He+22], are trained to reconstruct their own input
data. They can learn to reconstruct even complex details present in this data and are
thus promising candidates for generating representations that capture the fine-grained
features of medical images without explicit labels. Such versatile representations can
subsequently serve as a strong foundation for various downstream tasks, reducing the
dependence on large amounts of labeled data.

By leveraging data sourced from the Rechts der Isar Hospital (MRI), we were able to
test this hypothesis in a large-scale, real-world clinical setting. Previously, we already
tested the MAE SSL strategy in a smaller-scale pilot study on the publicly available
IRMA dataset [Leh+03] consisting of 12,000 radiographs from various anatomical regions.
This pilot study proved the feasibility of this approach and also showed preliminary
evidence for the efficacy of the MAE SSL strategy in low-data scenarios: The pre-trained
Vision Transformer Masked Autoencoder (ViT MAE) model outperformed a supervised
Vision Transformer (ViT) model on an anatomical region classification (ARC) task in
the low data (1%) regime by achieving a 84.58% vs. 79.08% top-1 accuracy, yielding a
7% relative improvement. In this work, we have extended the MAE pre-training to a
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1 Introduction

much larger dataset sourced from the MRI, comprising more than 600,000 radiographs.
Furthermore, we have evaluated the models on the more complex and clinically relevant
downstream tasks of foreign material detection (FMD) and fracture detection (FRAC).

Scaling the pre-training to 600,000 real-world radiographs presented us with several
challenges. On the one hand, the computational cost of pre-training increased signif-
icantly. This was not only due to the larger dataset size, but also due to training on
high-resolution images, frequently reaching up to 3,072 × 3,072 pixels, instead of the
standard resolution of 224 × 224 often used in the field of computer vision. This scaling
of image resolution lead to a costly 188× increase in pixels per image1, but medical
conditions like hairline fractures might not be discernible with a resolution of only
224 × 224 pixels. Another challenge arising from the real-world nature of the scans
in this dataset was handling the high variability in image resolutions, as there were
391,013 unique resolutions present in our dataset. Transformer-based architectures are
in general capable of handling variable-sized inputs, but in order to enable efficient
batch processing during training, we devised and implemented a novel batching strategy.
Our strategy clusters images of similar resolution to minimize computational overhead
caused by padding images in each batch to compatible sizes. Finally, optimizing data
storage, caching and loading were crucial steps of our implementation, as the whole
dataset comprises over 5.5 terabytes of storage.

This research explores the efficacy of MAEs for pre-training on a large-scale real-world
radiograph dataset spanning various anatomical regions. Our contributions are the
following:

• We demonstrate that the MAE SSL strategy effectively alleviates the labeling
bottleneck in medical imaging by extracting high-quality, versatile embeddings
from unlabeled data which significantly enhance performance on several medically
relevant downstream tasks with minimal labels.

• We show that domain-specific pre-training can outperform even considerably
larger general-purpose pre-training, as evidenced by improved performance on
the specialized medical task of fracture detection.

• We propose practical solutions to the challenges posed by large-scale, real-world
medical imaging datasets, paving the way for further exploration into the applica-
bility of SSL techniques across medical imaging challenges.

1Due to the quadratic complexity of the Transformer self-attention mechanism, this would have resulted
in an even more extreme 35,375× increase in operations per image, if not further addressed.
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2 Background & Related Work

2.1 Transformer-based Models

Since the introduction of the Transformer in 2017, transformer-based architectures have
taken over many subfields of machine learning, starting a revolution in natural language
processing (NLP) and progressively also taking over the field of computer vision since
their adoption to images in 2021. State-of-the-art architectures are increasingly shifting
away from the convolutional paradigm and towards models based entirely on the
attention mechanism or hybrid architectures.

Attention Is All You Need [Vas+17] introduced the Transformer architecture as a novel
alternative to traditional recurrent neural networks (RNNs) or convolutional neural
networks (CNNs) for sequence modeling and transduction tasks. It achieved state-of-the-
art results in machine translation tasks and generalizes effectively to various applications.
It relies solely on the attention mechanism, resulting in superior parallelizability and
training efficiency compared to previous models. The Transformer model consists
of an encoder and a decoder part. The encoder maps an input sequence of symbol
representations to a sequence of continuous representations, also called embeddings.
The decoder generates the output sequence one element at a time, in an auto-regressive
fashion, i.e. consuming the previously generated symbols as additional input. Both
the encoder and decoder utilize stacked self-attention and point-wise, fully connected
layers.

Due to their superior results, parallelizability and flexibility regarding varying input
sizes, transformer-based architectures serve as the base for all of our tested models.

An Image is Worth 16x16 Words [Dos+21] extended the Transformer architecture to
computer vision by introducing the Vision Transformer (ViT). This approach reshapes
2D images into sequences of flattened 2D patches, which are fed into an architecture of
alternating multi-headed self-attention and multi-layer perceptron blocks. Consequently,
the outputs of the ViT encoder are representations of the image patches. A special clas-
sification token [CLS] is prepended to the sequence of patches. Its final representation
serves as an aggregate representation of the entire image for downstream tasks, such as
classification. The process of passing an image through the ViT architecture is visualized
in Figure 2.1.

This work lays the base for extracting image representations using the Transformer
architecture and is thus essential to our work. Furthermore, the authors highlight the
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2 Background & Related Work

possibility of pre-training the model on large datasets and subsequently fine-tuning it
on more specific downstream tasks, by replacing the pre-trained prediction head with a
zero-initialized feed-forward layer. They also mention the possibility of interpolating
the pre-trained positional embeddings to perform fine-tuning on a different resolution
than was used during pre-training, a method we heavily rely on in our work.

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm
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Norm

+L x

+

Transformer  Encoder

Figure 2.1: The architecture of the ViT model. An input image is reshaped into patches,
combined with a positional embedding and fed into the Transformer encoder.
The [CLS] token is prepended. Adapted from [Dos+21].

Masked Autoencoders are Scalable Vision Learners [He+22] proposed the Masked
Autoencoder (MAE) for image reconstruction, demonstrating its effectiveness in achiev-
ing state-of-the-art accuracy in image classification and transfer learning tasks. The MAE
training strategy consists of masking random patches of the input image and recon-
structing the missing pixels. The asymmetric encoder-decoder architecture involves an
encoder that operates only on unmasked patches and a lightweight decoder responsible
for image reconstruction. Masking a high proportion (e.g. 75%) of the input yields a
nontrivial and meaningful self-supervisory task. The lightweight decoder architecture,
combined with the fact that the encoder only processes a small portion of the data,
accelerates training significantly while also improving accuracy.

The MAE encoder consists of a ViT, which is applied only on the visible, unmasked
patches of the input image. It embeds these patches by a linear projection with added
positional embeddings and processes the resulting embeddings in a series of Transformer
blocks. Because no mask tokens are fed into the encoder, it operates only on a small
subset of visible tokens and thus only requires a fraction of compute and memory.
The typically high masking ratio largely eliminates the inherent spatial redundancy of
images, resulting in a task that cannot be solved easily by extrapolation.

The MAE decoder receives the full set of tokens as input, i.e. the encoded visible
patches and the mask tokens (a single shared, learned vector that indicates the presence
of a missing patch). Positional embeddings are added to all tokens before they are
passed through another series of Transformer blocks. Notably, the decoder is only
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2.1 Transformer-based Models

used during pre-training to perform the image reconstruction task and typically uses
significantly less computation than the encoder (less than 10%). The reconstruction
task consists of predicting the pixel values for each masked patch. As each element in
the decoder’s output is a vector of pixel values representing a patch, the loss can be
computed by calculating the mean squared error between the reconstructed and the
original image in the pixel space. The process of passing an image through the ViT MAE
architecture is visualized in Figure 2.2.

encoder

....

....

decoder

input target

Figure 2.2: The architecture of the ViT MAE model. The input patches are masked
according to the masking ratio. Only the visible patches are fed into the
encoder and the encoder output plus the mask tokens are passed into the
decoder. Finally, the decoder output is compared to the reconstruction target
to determine the loss. Adapted from [He+22].

By choosing an appropriate patch size when transforming the input images into
sequences of tokens, the MAE can learn to reconstruct even fine-grained but essential
features of its input, like hairline fractures and other granular pathologies of interest
when training on radiographs. Because pathologies will oftentimes be split across
multiple patches, choosing an adequate masking ratio will force the model to learn to
reconstruct pathologies that are only partly masked. As a consequence of learning to
reconstruct these fine-grained features and pathologies, the model effectively learns
to form meaningful internal representations of these characteristics as outputs of its
encoder part. This is the vital property making the MAE encoder a promising candidate
to serve as pre-trained foundation model for specialized downstream tasks. The patch
size and masking ratio have to be chosen in a trade-off between modeling accuracy and
efficiency / memory constraints.
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2 Background & Related Work

2.2 Self-supervised Learning in Medical Imaging

Due to the prevalence of unlabeled data in medical imaging and the fact that generating
high-quality labels for medical images is costly, self-supervised learning (SSL) plays
an important role in the field. Self-supervised pre-training of models lessens their
dependence on labeled data, thereby cutting costs, reducing training time and compute,
and enabling researchers and medical personnel to build more specialized models in
less time.

A Simple Framework for Contrastive Learning of Visual Representations [Che+20]
introduced SimCLR, a contrastive learning approach for generating representations
of images. SimCLR achieved competitive performance with fully supervised models
on ImageNet classification and transfers well to other tasks. It relies heavily on data
augmentations.

Despite its convincing performance, we believe the contrastive learning approach
in general is not a fitting choice when trying to extract meaningful representations
from medical images, as the model is not forced to focus on reconstructing fine-grained
features of the medical data, but rather trained to contrast samples based on their global
features.

Self Pre-training with Masked Autoencoders for Medical Image Classification and
Segmentation [Zho+23] applied MAEs to medical image analysis. The authors argue
that the MAE aggregates contextual information to infer masked image regions, en-
hancing the understanding of interdependencies among anatomical structures crucial
in the medical imaging domain. The self pre-training method involves pre-training on
the same dataset as used for the downstream task and fine-tuning with task-specific
heads. Their experimental results demonstrate significant enhancements in medical
image segmentation and classification performance compared to random initialization
and traditional ImageNet pre-training methods. Notably, MAE self-pretraining showed
promising performance even on small-scale medical datasets, surpassing existing ap-
proaches, including ImageNet transfer learning.

While this approach is in general similar to ours, the authors simply cropped out
224 × 224 pixel regions from the images in their dataset to conduct training on. This
might be a viable strategy for their targeted task of classifying pathologies found in
the Chest X-ray 14 dataset [Wan+17], but is certainly a limitation of their approach,
since extensive cropping might remove pathologies and other clinically relevant details
from the input data. Relying on other means of reducing the image resolution is
also suboptimal, as evidenced by [Wol+23], where the authors showed that training
with a resolution of 1,024 × 1,024 pixels on the same Chest X-ray 14 dataset improves
classification performance, while training on lower resolutions, such as 256 × 256
pixels, is oftentimes insufficient for identifying small pathologies, forcing models to use
spurious discriminating features.
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2.3 Training on High-resolution and Variable-resolution Images

Self-Supervised Learning from Images with a Joint-Embedding Predictive Architec-
ture [Ass+23] focused on the partitioning of self-supervised learning from images into
generative methods and invariance-based, or contrastive, methods. The authors claim
that generative methods like masked pre-training require less prior knowledge than
view-invariance approaches, but the resulting representations are typically of lower
semantic level and require a more involved adaptation, e.g. end-to-end fine-tuning.
Invariance-based methods on the other hand optimize the encoder to produce similar
embeddings for two views of the same image. The authors argue that this approach can
produce representations of high semantic level, but might also introduce strong biases
which might be detrimental for certain downstream tasks. As a solution, they proposed
I-JEPA, a method to learn strong representations without relying on hand-crafted view
augmentations. I-JEPA works by predicting missing information in an abstract represen-
tation space. Representations of target blocks (parts of the image) have to be predicted
from a single context block. These target representations are computed by a learned
target-encoder network. The main idea behind this architectural choice is to eliminate
irrelevant pixel-level details, such that the model can focus entirely on semantic features.
The authors showed that their method outperformed pixel-reconstruction methods like
the MAE on ImageNet-1k, while also being 10× more efficient, due to predicting in the
representation space.

2.3 Training on High-resolution and Variable-resolution Images

Most computer vision models perform training and inference on the de facto standard
resolution of 224 × 224 pixels. Medical images like radiographs however tend to be
high-resolution and often vary significantly in their exact resolutions due to different
anatomical regions being visualized with identical pixel spacing. While both convo-
lutional methods and Transformers are in general flexible and able to take images of
varying resolutions as their input, training in batches requires at least intra-batch images
to be of the same resolution.

Typical strategies to deal with images of varying resolutions include resizing, crop-
ping, and padding. However, in the context of medical imaging, these strategies are
suboptimal. While resizing oftentimes distorts the original aspect ratio of the image,
cropping might remove relevant information altogether, and padding introduces a po-
tentially large amount of unnecessary padding tokens, which can be masked during
training, but still lead to an increase in overhead. These problems become increasingly
important with large-scale and real-world datasets, as the variance in resolutions grows
and computational overhead gets more expensive.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [Liu+21]
and Swin Transformer V2: Scaling Up Capacity and Resolution [Liu+22] introduced
and extended the Shifted Windows (Swin) Transformer. The Swin Transformer is the
author’s proposed general-purpose computer vision backbone. They argue that there
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2 Background & Related Work

are certain challenges in adapting the Transformer from text to vision, namely scale
variations and high image resolutions. Their hierarchical architecture addresses these
challenges by efficiently limiting self-attention computation to non-overlapping local
windows, while at the same time allowing for cross-window connections. They showed
that the Swin Transformer is flexible for modeling at various scales, while retaining
linear computational complexity. In their second paper, introducing the second version
of the Swin Transformer, they trained on images with resolutions of up to 1,536 × 1,536
pixels.

Swin MAE: Masked Autoencoders for Small Datasets [Dai+23] built upon the Swin
Transformer to address the limited availability of large and well-annotated datasets in
the medical domain. While the authors acknowledge the advantages of unsupervised
learning for medical image analysis due to its label-free nature, they criticize its depen-
dence on large datasets. Their proposed solution to this problem is the Shifted Windows
Masked Autoencoder (Swin MAE), a Masked Autoencoder with a Swin Transformer as
its backbone. They showed that the Swin MAE works effectively even on small datasets,
consisting of a few thousand medical images, and without pre-training. Their model
was capable of learning semantic features solely from images, with a performance
comparable to that of a supervised Swin Transformer, pre-trained on ImageNet and
transferred to the downstream tasks.

Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
[Deh+24] leveraged the flexible sequence-based modeling of ViTs to tackle the ubiquitous
but suboptimal choice of resizing images to a fixed resolution before processing them
in computer vision models. The Native Resolution Vision Transformer (NaViT) uses
sequence packing to handle arbitrary resolutions and aspect ratios, i.e. multiple patches
from different images are packed into a single sequence and processed by the model
simultaneously. During self-attention and pooling operations, the receptive field of each
token is limited to tokens from the same source image.

FlexiViT: One Model for All Patch Sizes [Bey+23] addressed the trade-off between
efficiency and accuracy that is faced when choosing a patch size for training a ViT.
Smaller patches lead to higher accuracy, but also increase computational cost, and
changing the patch size typically requires retraining the model. The authors proposed
randomizing the patch size during training and showed that this simple drop-in change
leads to a single set of weights that performs well across a wide range of patch sizes.
The implementation of randomized patch sizes during training time involves resizing
the patch embedding weights and positional embeddings using bilinear interpolation.
This approach was already briefly proposed in the original ViT paper [Dos+21] to
enable fine-tuning at a higher resolution than was used during pre-training. In their
experiments, the authors used an image resolution of 240 × 240 pixels and patch sizes
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2.3 Training on High-resolution and Variable-resolution Images

ranging from 8 × 8 to 48 × 48 pixels. This technique has also been employed in works
such as [Juy+24; Var+24].

VariViT: A Vision Transformer for Variable Image Sizes [Var+24] introduced the
Variable Image Size Vision Transformer (VariViT) model architecture, which is capable
of handling variable image sizes while maintaining a consistent patch size. The authors
developed a novel positional embedding resizing scheme for a variable number of
patches, as well as a new batching strategy to reduce computational complexity and
computation time by up to 30%. This batching strategy groups images of the same size
into batches and uses gradient accumulation to perform weight updates on gradients
over several mini-batches.

While this paper focuses on 3D image representation learning and also utilizes the
consistent center alignment property of tumor crops—two aspects that were less relevant
in our own research—their batching strategy served as inspiration for our own custom
batching strategy, which enabled us to efficiently handle the extremely high variation of
image resolutions present in our dataset. The authors also mentioned the exploration of
their batching strategy and positional embedding technique in the context of extremely
large datasets or high-resolution images as promising avenues for further research, both
of which we covered in our work.
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3 Method

3.1 Data and Preprocessing

There were several characteristics of the real-world clinical data we used that not
only necessitated specific preprocessing steps, but also had a direct influence on our
training procedures. The two most prominent characteristics were the unusually large
image dimensions, frequently reaching 3,072 × 3,072 pixels or higher, and the extreme
variability in resolutions and aspect ratios present in the data.

3.1.1 Rechts der Isar Hospital Radiograph Data

The data sourced from the Rechts der Isar Hospital (MRI) consists of a total of 647,636
radiograph images stemming from 169,251 different patients and spanning 14 different
anatomical regions. The exact distribution of radiographs across different anatomical
regions is visualized in Table 3.1 and Figure 3.1. Samples of the raw imaging data of
each anatomical region are visualized in Figure 3.2. In total, the dataset consists of over
5.5 TB of radiograph data.

Figure 3.1: A histogram showing the distribution of scans across different anatomical
regions in the MRI dataset.

The MRI dataset was compiled by extracting radiograph information from the Picture
Archiving and Communication System (PACS), which serves as a central repository for
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3 Method

Figure 3.2: Raw imaging data of each anatomical region contained in the MRI dataset.
Several regions overlap, some have scans taken from multiple different
perspectives. Some scans are misclassified in the PACS. The visualized
samples are still unprocessed, showing various falsely inverted scans. Many
also show the black padding often contained in the raw radiograph data.
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3.1 Data and Preprocessing

Table 3.1: An overview of the anatomical regions contained in the MRI dataset, after
filtering and preprocessing.

Anatomical Region # Patients # Scans

Knee 39,970 169,595
Shoulder 25,314 107,070
Ankle 23,532 81,577
Elbow 12,610 55,914
Foot 16,226 53,385
Wrist 10,367 43,246
Hand 15,402 41,201
Cervical spine 9,838 35,150
Clavicle 3,844 20,506
Thoracic spine 5,834 13,995
Lumbar spine 3,272 10,756
Skull 1,122 3,164
Ribs 1,261 2,668
Scapula 659 1,650
Total 169,251 639,877

medical imaging data in the clinic. Each radiograph is stored in the Digital Imaging and
Communications in Medicine (DICOM) format [Nat24], an international standard for
transmitting, storing, processing, and displaying medical imaging information. DICOM
files not only contain the raw image data, but also metadata like patient demographics
and imaging modalities.

An important characteristic of this dataset is the extremely high variability in image
resolutions and aspect ratios. In radiography, the term spatial resolution refers to the
ability of an imaging modality to differentiate two adjacent structures as being distinct.
It is typically measured in line pairs per millimeter (lp/mm). The DICOM standard [Nat24]
contains a special SpatialResolution attribute for this, defined as The inherent limiting
resolution in mm of the acquisition equipment for high contrast objects for the data gathering and
reconstruction technique chosen. The SpatialResolution DICOM attribute in our dataset
assumes values in the range 0.143–0.148, meaning the spatial resolution lies between
3.38 and 3.50 lp/mm1. Because an almost identical spatial resolution is obtained for
scans across all anatomical regions, the resulting radiographs differ in size, just like the
anatomical regions themselves differ in size. This fact, plus the fact that each radiograph
is limited to the region of interest in order to minimize the radiation exposure of the
patient, lead to almost every radiograph having a unique resolution and aspect ratio.
Consequently, there are 391,013 unique resolutions present in the dataset. Histograms

1The human eye for example has the capability of differentiating a spatial resolution of 5 lp/mm at a
viewing distance of 25 cm [HA15].
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3 Method

of the distribution of radiograph resolutions are shown in Figure 3.3.

Figure 3.3: Histograms showing the distribution of radiograph resolutions present in
the MRI dataset, after removing radiographs with a resolution higher than
3,072 × 3,072 pixels. The respective quartiles are marked by red lines.

3.1.2 Data Preprocessing

The imaging data in DICOM files is represented by a 2D pixel array of unsigned 16-bit
integers. Additionally, the DICOM headers of each file contain information about patient
demographics and imaging modalities.

By inspecting the maximum pixel value present in each pixel array, we filtered out
five scans that were completely black and two more which were black with only patient
information written on them. Inspecting the distribution of mean pixel values across all
pixel arrays revealed the same black scans, as well as 31 additional scans that contained
only a small portion of imaging data, surrounded by thick black borders. These were also
removed from the dataset. The largest pixel arrays had a resolution of up to 8,000 × 5,000
pixels. In total, there were 7,721 images with a resolution larger than 3,072 × 3,072 pixels,
stemming from scans of e.g. whole spines or whole legs. We determined this resolution
to be a good cutoff point and dropped all larger scans from the dataset. The smallest
pixel arrays contained scans of single fingers or toes, which we kept. The resulting
distribution of widths and heights is shown in Figure 3.3. Out of the 647,636 valid
images originally obtained from the MRI PACS, this left us with 639,877 valid, filtered
radiographs.

There were 46,833 pixel arrays with a minimum pixel value greater than zero, many
of them representing inverted scans. The raw imaging data visualized in Figure 3.2
contains several inverted scans. Occasionally, medical professionals invert radiographs
on purpose to get a better view of the trabeculae. Nevertheless, after consultation with
radiologists, we decided to correct for the inverting of radiographs as far as possible.
We tested multiple approaches to find and correct inverted radiographs, including

• filtering by minimum pixel value > 0,

14



3.2 Models

• filtering by minimum pixel value > c with c ∈ N,

• filtering by mean pixel value > c with c ∈ N,

• filtering by pixel values on the edges of images, and

• utilizing the DICOM headers

– ShowGrayscaleInverted,

– PhotometricInterpretation and

– PresentationLUTShape.

However, we encountered false positives with all five approaches, and due to the large
amount of scans in our dataset, there exists no practical way of making sure there are
no false negatives as well. This also presents a challenge when comparing different
strategies for identifying inverted radiographs. Ultimately, we inverted all images based
on the PhotometricInterpretation DICOM header, as this seemed to be the most
reliable way of identifying falsely inverted radiographs.

We manually inspected random samples of the data to identify common artifacts,
some of which can be seen in Figure 3.2. The most common ones include markers
to identify the laterality of the scanned body part, e.g. L/R, markers to identify the
positioning of the patient during the scanning procedure, e.g. Liegend/Stehend, and x-ray
reference spheres.

There are several other relevant points which do not require direct intervention during
preprocessing, but are still important to keep in mind when working with this kind
of data. For example, pathologies such as hairline fractures may only be detectable
at a very fine-grained level of detail. Such information is almost certainly lost when
resizing to a low resolution of 224 × 224 pixels, as is standard practice in computer vision.
Furthermore, when considering multiple scans from the same patient, it is important
to note that the patient could have been diagnosed elsewhere before, making their first
scan in the dataset a follow-up scan in reality. Additionally, in some cases a fracture
may not be visible in an initial scan but could appear in a follow-up scan, for instance
through the process of demarcation.

3.2 Models

3.2.1 Vision Transformer Masked Autoencoder

The foundation for our pre-training is a Vision Transformer Masked Autoencoder
Base (ViT MAE B) model, which is a MAE using a Vision Transformer Base (ViT-B)
as its encoder. We modified the model to handle variable image sizes, by bilinearly
interpolating the positional encoding, even during pre-training itself.

Choosing a suitable patch size is an important requirement for extracting meaningful
representations, as the model best learns to reconstruct anomalies when they are partly
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masked during pre-training. The patch size also has direct influence on the memory
requirements of training the model, so choosing it is a trade-off between accuracy and
memory/compute capacity available. We tested possible patch sizes of 16, 32, 48 and 64
and determined a patch size of 48 × 48 pixels to be a valid choice. The original ViT-B
expects an input image size of 224 × 224 pixels, resulting in 196 tokens per image, when
using a patch size of 16 × 16 pixels. Our model supports a maximum resolution of
3,072 × 3,072 pixels, resulting in a maximum of 4,096 tokens per image, when using
our adapted patch size of 48 × 48 pixels. The median image size in our data is roughly
2,000 × 1,500, so the median amount of tokens per image is roughly 1,302. This results in
an average 7× increase in tokens input into the model. However, many of these tokens
represent uninformative black padding, which is present in the raw data, even without
padding during preprocessing. Our chosen patch size is visualized in Figure 3.4. We
also tested different hidden and intermediate sizes for the MAE encoder, but decided
to keep the default ViT-B configuration for these parameters. Because radiographs are
monochrome, we only require one channel, instead of three, as used in the original
ViT-B for RGB images. Apart from these changes, we kept the same configuration as the
original ViT MAE B. The final configuration is listed in Table 3.2.

Figure 3.4: A visualization of the chosen patch size of 48 × 48 pixels and masking ratio
of 75%. The image is padded to a multiple of the patch size. Note that most
radiographs already contain a black border before preprocessing.

3.2.2 Vision Transformer

Because the encoder part of the MAE used during fine-tuning is essentially a Vision
Transformer Base (ViT-B), we used an equivalent ViT-B model, once randomly initialized

16



3.3 Training

Table 3.2: An overview of the ViT MAE B and ViT-B model configurations. Parameters
that differ from their default definition are printed in bold with their original
values in parentheses.

Parameter ViT MAE B ViT-B

Maximum image size 3,072 (224) 3,072 (224)
Number of channels 1 (3) 3
Patch size 48 (16) 16
Number of attention heads 12 12
Intermediate size 3,072 3,072
Number of hidden layers 12 12
Hidden size 768 768
Hidden activation GELU GELU
Decoder number of attention heads 16 /
Decoder intermediate size 2,048 /
Decoder number of hidden layers 8 /
Decoder hidden size 512 /

and once pre-trained on ImageNet data, as our baseline models to compare all fine-
tuning experiments to. In order to use the ImageNet pre-trained weights for this model,
we had to keep the default of three input channels, instead of using only one input
channel as we did for the MAE model. To accommodate this, we replicated the single
radiograph channel across all three input channels. After their respective initialization,
these baseline models were fine-tuned in the same way and on the same data as the
ViT MAE model pre-trained on radiograph data. An overview of the baseline model
configuration is given in Table 3.2.

3.3 Training

Our approach encompasses two phases of training: pre-training and fine-tuning. The
pre-training phase leverages large amounts of unlabeled data with the goal of extracting
meaningful and versatile representations from the raw data itself. In this stage, the MAE
model is trained to reconstruct masked portions of the input data, encouraging the
model to capture underlying patterns and relationships in the data without requiring
explicit labels. In the fine-tuning phase, this pre-trained foundation model is adapted to
specific downstream tasks using small sets of labeled data spanning only a few hundred
samples each. This transfer learning approach enables the model to converge faster and
achieve a better performance than when starting with randomly initialized weights.

We stratify the train, validation and test set by patients, as to not contaminate the
testing data with follow-up scans of patients already seen during training. All training
runs were conducted using PyTorch [Pas+19] on an NVIDIA A40 GPU, with 48 GB of
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memory, and in a mixed precision setting.

3.3.1 Training on Variable-resolution Images

As outlined in Section 3.1, there are 391,013 unique resolutions present in our dataset.
These different resolutions have to be handled appropriately during training in order to
enable proper batch processing. Our transformer-based models are in general capable of
handling variable-sized inputs, but all images contained in a batch still have to be of the
same resolution and all image resolutions have to be multiples of the model’s patch size.
Furthermore, positional encoding requires special attention with differing input sizes.
Rather than simply enabling variable resolution training, we designed our solution to
this problem with an additional focus on computational efficiency. This is especially
important due to the large resolutions and large-scale dataset we were training on.

Naive solutions to this problem include resizing, cropping, and padding. While
resizing is a standard approach in the field of computer vision, it is suboptimal for
medical imaging, as it destroys the original aspect ratio, as well as the uniform pixel
spacing across images, and might introduce artifacts or lead to the loss of important
fine-grained information. Cropping is also not an option in our situation, as it could
remove crucial characteristics and anomalies from radiographs. This is especially
problematic due to the large range of image resolutions present, as cropping large
3,072 × 3,072 scans to e.g. 1,000 × 1,000 pixels would result in the loss of about 90%
of their original content. Padding all images to a fixed size does not run into these
problems, but would unnecessarily increase computational complexity by introducing
very large uninformative black borders, due to the wide range of resolutions present in
the dataset.

Adjusting the patch sizes on a per-image basis, as proposed by [Bey+23], is suboptimal
in the medical domain because the size of fractures and other pathologies is in general
not directly correlated with the size of the investigated anatomical region. Although
fractures are typically smaller in regions such as the hands compared to e.g. the femur,
they can also present as finer structures in areas like the shoulder, skull, or ribs. Conse-
quently, choosing a larger patch size for larger scans is not a straightforward solution.
Utilizing a CNN or similar for embedding the images using a variable kernel size to
obtain a fixed number of patches runs into the same problem, while also introducing a
new embedding module which might not work as well as the default projection.

Keeping a fixed patch size and varying the masking ratio depending on the total
amount of input tokens per image would not run into this same problem, but might
introduce a bias against certain resolutions or even whole anatomical regions, as some
images would not be masked at all, while others would be masked almost completely.

In general, removing tokens on a per-image basis might not necessarily speed up
model training as memory allocation is typically slow, but using variable image sizes
across batches can still offer improvements, as in this case only inter-batch memory usage
changes. Thus, we decided to keep intra-batch image sizes constant, while minimizing
introduced padding across batches.
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Dynamic Batch Binning

Our solution to this problem was inspired by [Var+24], where the authors developed
a custom batching strategy that groups images of the same sizes into batches, while
allowing image size to vary from batch to batch. However, due to the high variability of
resolutions in our dataset, this strict batch binning strategy, where each unique resolution
forms its own bin, would lead to high fragmentation and many either incomplete or
discarded batches. We thus propose the Dynamic Batch Binning (DBB) strategy. This
strategy uses a fixed number of bins and corresponding resolutions, determined by the
distribution of resolutions present in the dataset. Images are dynamically sorted into
the bin representing the next higher resolution and padded to that resolution. This
approach thus minimizes the additionally introduced padding while still forming large
enough bins to avoid fragmentation.

The bins should be chosen with respect to the resolutions present in the dataset and
the patch size to be used by the model. In theory, bin sizes can be picked completely
dynamically, depending on the dataset at hand, but we picked them manually, by
combining viable cutoff points that emerge from the distribution of resolutions with
suitable multiples of the model’s patch size. Considering the quartiles of the resolution
distribution shown in Figure 3.3 and possible model patch sizes of 8 × 8, 16 × 16, 32 × 32
and 48 × 48 pixels, we decided to define the bins by specifying six common cutoff points
for both width and height: 1,152, 1,536, 1,920, 2,304, 2,688, and 3,072. These cutoff points
result in a total of 6 · 6 = 36 different bins. Thus, even in a validation setting of using
only 5% of the whole dataset, each bin contains roughly 800 images to form batches
from.

We employed this batching strategy during pre-training, where the savings in compu-
tational overhead were largest. Due to memory constraints, we additionally employed
gradient accumulation across batches. During fine-tuning, we used exact image sizes,
padded to the next multiple of the model’s patch size, as our fine-tuning datasets were
too small (several hundred images) to form meaningful bins. We also employed gradient
accumulation to form virtual batches with an effective batch size larger than one during
fine-tuning.

Positional Encoding

By design, and unlike CNNs, Transformers lack spatial awareness across tokens. The
added positional encoding provides this spatial information to the model, enabling it to
relate the relative positions of patches in an image. As the positional encoding scheme
is fixed for a single model, handling images of varying resolutions is not trivial. The
original ViT paper [Dos+21] proposed bilinear interpolation as a way to enable fine-
tuning at a higher resolution than was used during pre-training. This is computationally
efficient and a commonly used technique in the literature. We employed bilinear
interpolation even throughout pre-training, to enable training on varying resolutions.
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3.3.2 Pre-training Strategy

For pre-training, we split our data in a 80/5/15 train-validation-test split, stratified by
patients. For enabling training on variable-sized images, we employed the previously
defined DBB strategy. As recommended in the ViT MAE paper [He+22], we chose a
fairly high masking ratio of 75% for the pre-training task of image reconstruction, which
is visualized in Figure 3.4. We used a hardware batch size of 162 and accumulated
gradients across every 64 batches, resulting in an effective batch size of 1,024. As an
optimizer, we used AdamW [LH19] with a weight decay value of 0.05 and momentum
values of β1 = 0.9, β2 = 0.95, as proposed in [He+22]. In order to determine a good
base learning rate, we employed a grid search on the values 3 · 10−3, 1 · 10−3, 3 · 10−4

and 1 · 10−4, which we ran on a subset of 10.000 training samples for five epochs each.
Out of these learning rates, 1 · 10−4 performed best. For scheduling the learning rate,
we used cosine annealing with a linear warm-up of 5 epochs and a minimum learning
rate of 1 · 10−5. Because pre-training on such a large dataset and images of such high
resolutions is slow3 and we could therefore only train for a small amount of epochs,
we implemented a step-wise version of this scheduling policy, in order to get a better
learning rate step resolution. The exact training configuration is listed in Table 3.3. We
trained for a total of 10 epochs, which took 8 days and 7 hours.

Table 3.3: An overview of the pre-training configuration.

Parameter Value

Maximum image size 3,072
Number of image channels 1
Validation set size 5%
Test set size 15%
Patch size 48
Mask Ratio 75%
Hardware batch size 16
Gradient accumulation 64
Effective batch size 1,024
Base learning rate 1 · 10−4

Loss function Mean squared error
Optimizer AdamW
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.95
Number of epochs 10
Cosine annealing 5 + 5 warm-up

2This batch size was chosen primarily with respect to memory constraints.
3Mostly because of a slow network-attached storage (NAS) access speed, which hindered us from

achieving a high GPU utilization.
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3.3.3 Fine-tuning Strategy

For fine-tuning the pre-trained ViT MAE, we employed a linear probing strategy, by
discarding the MAE decoder and adding a fully connected layer for classification on top
of the MAE encoder’s [CLS] token. This linear layer thus has an input size corresponding
to the hidden size of the encoder and an output size corresponding to the amount of
classes for the respective downstream task4.

We evaluated our models on three different clinical downstream tasks of varying
difficulty: anatomical region classification (ARC), foreign material detection (FMD) and
fracture detection (FRAC). All labels for the ARC task were extracted directly from the
PACS, while those for the other two tasks were created manually by radiologists. For
the ARC task, we sampled a subset of 1,000 radiographs. For the other two tasks, we
used all available 652 labeled data points. Examples of the different anatomical regions
are given in Figure 3.2, examples of the presence and absence of foreign material can be
seen in Figure 3.5 and examples of fractures are shown in Figure 3.6. We discarded all
samples labeled as Unsure by the radiologists. An overview of the class distribution for
each downstream task is given in Table 3.4.

Figure 3.5: A visualization of radiographs with and without foreign material, labeled by
radiologists. These samples were used in the FMD downstream task.

We tested different training strategies for fine-tuning; freezing the model, keeping it
completely unfrozen, installing the final classification layer on top of a mean pooling
of the encoder embeddings or adding it directly on top of the encoder’s [CLS] token.
Ultimately, we implemented the following fine-tuning strategy: For each downstream
task, the ViT-B model was initialized with its respective weights—random, ImageNet
pre-trained, or MRI pre-trained—and its classifier was replaced by a randomly initialized
linear layer on top of the model’s [CLS] token. During fine-tuning, all weights remained
trainable.

4In our case either two for foreign material detection and fracture detection or 14 for anatomical region
classification.

21



3 Method

Figure 3.6: A visualization of radiographs with and without fractures, labeled by radiol-
ogists. These samples were used in the FRAC downstream task. All samples
with the label Unsure were discarded.
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Table 3.4: An overview of the samples per class for each downstream task.

Downstream Task Class # Samples Percentage

Anatomical region classification (ARC) Knee 170 17.0%
Shoulder 115 11.5%
Elbow 93 9.3%
Foot 88 8.8%
Cervical spine 80 8.0%
Hand 79 7.9%
Wrist 77 7.7%
Clavicle 60 6.0%
Thoracic spine 60 6.0%
Ribs 48 4.8%
Scapula 46 4.6%
Ankle 39 3.9%
Skull 38 3.8%
Lumbar spine 7 7.0%
Total 1,000

Foreign material detection (FMD) Present 221 33.9%
Absent 431 66.1%
Total 652

Fracture detection (FRAC) Present 212 32.5%
Absent 440 67.5%
Total 652
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We split the data in a 75/10/15 train-validation-test split, stratified by patients and
respective labels for each downstream task. Due to the small dataset sizes, we did not
employ our DBB strategy used during pre-training and instead trained using a batch
size of one, simply padding each image to a multiple of the respective model’s patch
size: either 16 for the baselines, or 48 for the pre-trained model. We used gradient
accumulation to achieve an effective batch size of 64. As an optimizer, we used AdamW
with the same momentum values β1 = 0.9, β2 = 0.95 as during pre-training, but without
weight decay, as proposed in [Dos+21].

In order to determine a good base learning rate, we performed a grid search on the
ARC task, as this task was the easiest to train on and thus led to the biggest observable
differences when testing different learning rates for a few epochs. We tested each
learning rate for ten epochs on the whole training set of the ARC downstream task.
For our pre-trained model, we tested the values 1 · 10−3, 1 · 10−4, 3 · 10−5, 1 · 10−5 and
1 · 10−6 and found 3 · 10−5 to perform best. For the baseline models, we tested the values
1 · 10−3, 3 · 10−4, 1 · 10−4, 1 · 10−5 and 1 · 10−6 and found 1 · 10−4 to perform best.

As proposed in [Dos+21], we used cosine annealing with a linear warm-up across ten
epochs and a minimum learning rate of 1 · 10−6 for scheduling the learning rate during
fine-tuning. The annealing occurred across a maximum period of 100 epochs, which
was never fully reached due to early stopping. In contrast to pre-training, we configured
the scheduler to update the learning rate each epoch rather than each step, as the much
smaller dataset sizes allowed for training for more than only a few epochs. We trained
all models until convergence, determined by an early stopping policy, monitoring the
balanced validation accuracy with a patience of ten epochs.

During fine-tuning, we employed random augmentations to prevent overfitting. The
applied augmentations were a random composition of the following:

• Random affine transformation, scaling by si ∼ U (0.9, 1.1) and rotating by θi ∼
U (−20◦, 20◦), applied with probability p = 0.5,

• Random horizontal flip, applied with probability p = 0.5,

• Random gamma correction by γ = eβ with β ∼ U (−0.5, 0.5), applied with proba-
bility p = 0.5,

• Random Gaussian noise with µ = 0 and σ ∼ U (0, 0.25), applied with probability
p = 0.3,

• Random bias field artifacts [Sud+17] with a maximum magnitude of n = 0.5 and
an order of 3, applied with probability p = 0.3,

• Random Gaussian blur with σi ∼ U (0, 2), applied with probability p = 0.3,

• Random crop to c ∼ U (0.9, 1.0) of the original size, always applied.

These individual augmentations and their random composition, as used during fine-
tuning, are visualized in Figure 3.7.
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Figure 3.7: A visualization of the different augmentations employed during fine-tuning.
The last row shows the random composition of augmentations, as used
during fine-tuning.
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Besides the weight initialization, the individually tuned learning rates, and the varying
patch sizes and number of input image channels, all fine-tuning experiments were
conducted under equal conditions. The exact training configurations for fine-tuning and
training the baseline models are listed in Table 3.5.

Table 3.5: An overview of the training configurations used for fine-tuning and training
the baseline models.

Parameter Baseline Fine-tuning

Maximum image size 3,072 3,072
Number of channels 3 1
Validation set size 10% 10%
Test set size 15% 15%
Patch size 16 48
Hardware batch size 1 1
Effective batch size 64 64
Base learning rate 1 · 10−4 3 · 10−5

Loss function Cross-entropy Cross-entropy
AdamW weight decay 0.0 0.0
AdamW momentum β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.95
Max. number of epochs 100 100
Early stopping patience 10 10
Cosine annealing 90 + 10 warm-up 90 + 10 warm-up

3.3.4 Training of Baseline Models

The ViT-B baseline model with pre-trained weights was originally pre-trained by the au-
thors of [Dos+21]. They pre-trained for 90 epochs in a supervised manner on ImageNet-
21k, comprising 14 million images at a resolution of 224 × 224 pixels. Afterwards,
they fine-tuned on ImageNet-1k, comprising 1 million images, also at a resolution of
224 × 224. Finally, we fine-tuned again on each respective downstream task, as outlined
in Subsection 3.3.3.

The ViT-B baseline model with randomly initialized weights was effectively trained
from scratch during the fine-tuning phase.
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This chapter presents the results of our work, focusing on two main contributions: the
gains in computational efficiency, achieved by introducing a novel batching strategy, as
well as the performance gains on downstream tasks with minimal labels, attained by
pre-training. The batching strategy is evaluated by comparing against other possible
strategies, while our pre-trained model is evaluated by comparing against the previously
defined baseline models on several clinical downstream tasks.

4.1 Impact of Dynamic Batch Binning on Computational
Efficiency

As the limiting factor with regards to training duration in all of our experiments was the
slow NAS access speed, comparing the number of operations performed, rather than
the time spent training, provides a more meaningful evaluation of different batching
strategies.

We thus base our comparison on the total amount of tokens fed into the model
during pre-training, using either the minimum viable padding to the model’s patch
size (thereby enforcing a batch size of one), padding all images to a fixed resolution of
3,072 × 3,072 pixels, or our proposed Dynamic Batch Binning (DBB) strategy. As can
be seen in Table 4.1, our solution introduced a padding token overhead of 19% when
compared to the theoretical minimum, while padding to a fixed resolution would have
introduced an overhead of 184%. When directly comparing our approach to the fixed
resolution approach, savings in total processed tokens are 58%, i.e. we only processed
42% of the tokens that would have been processed when using a fixed image size instead.
Of course, this ratio could be improved even further by defining a larger amount of
smaller bins in a trade-off against efficient batch processing / bin fragmentation.

When translating this input token overhead into computational overhead, one has to
consider the different operations performed during ViT MAE pre-training. First, each
patch/token is linearly projected into a fixed-size embedding vector. The compute for
this step scales linearly with the number of tokens. According to the fixed masking
ratio, a proportion of the tokens is masked and the visible patches are processed by the
Transformer encoder, which applies a series of self-attention and feed-forward operations.
Due to the self-attention mechanism, the compute required for the Transformer encoder
scales quadratically with the number of tokens. The compute for the decoder, i.e. for
reconstructing the input image, also scales quadratically with the number of tokens.
This means that as the total input token count increases, the compute required grows
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approximately quadratically, mostly due to the Transformer encoder. Thus, our approach
saved roughly 82% of total compute when compared to the fixed resolution approach.
The computational overhead introduced by different batching strategies is compared in
more depth in Table 4.1.

Table 4.1: A comparison of input token overhead and computational overhead when
employing different batching strategies during pre-training. All values are
based on a single epoch on the full pre-training dataset of 639,877 images.

Batching Strategy Total Input Tokens Processed Tokens Total Compute

Padded to patch size 9.22 · 108 100% 100%
Fixed image size 2.62 · 109 284% 807%
DBB 1.10 · 109 119% 142%

4.2 Impact of Pre-training on Downstream Task Performance

In this section, we compare the downstream task performance of our pre-trained model
against that of a ViT-B without pre-training, i.e. with randomly initialized weights, and
that of a ViT-B which was pre-trained extensively on the ImageNet-21k dataset. For
comparing the performances of the tested models, we measured each model’s test set
accuracy, as well as balanced test set accuracy, for each downstream task. The balanced
accuracy is calculated as the mean of sensitivity and specificity and is a more informative
metric than absolute accuracy when dealing with class imbalances.

Pre-training Results After pre-training for 10 epochs, the ViT MAE B achieved a final
mean squared error (MSE) reconstruction loss of 0.0523 on the test set. Exemplary re-
constructions of a masked radiograph from the validation set after different pre-training
epochs are shown in Figure 4.1. However, assessing the pre-training performance solely
based on the achieved reconstruction loss or the visual quality of the reconstructions
might be misleading, as the ViT MAE decoder is deliberately designed in a lightweight
fashion. The reason behind this architectural choice is that the image reconstruction task
is not the final goal of pre-training and reconstruction has to remain a challenging task
in order to train the encoder to generate embeddings in a maximally effective way1.

Fine-tuning Results The utility of pre-trained models is best judged by evaluating
their performance on downstream tasks. To this end, we defined three downstream
tasks in Subsection 3.3.3, namely anatomical region classification (ARC), foreign material
detection (FMD), and fracture detection (FRAC).

1This is also the reason why reconstructions in the literature are typically blurry, as can also be observed
in [He+22; Xin+23].
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Figure 4.1: Exemplary ViT MAE B reconstructions of a sample image from the validation
set after 1-10 epochs of pre-training. The image was masked by 75%. The
printed reconstruction loss is the MSE compared to the original input image.
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On the ARC task, the ViT-B model pre-trained on ImageNet-21k achieved the highest
balanced accuracy (92.21%) and absolute accuracy (93.57%). The ViT MAE B model
pre-trained on radiographs outperformed the randomly initialized ViT-B (73.57% vs.
56.71%), but did not match the performance of the model pre-trained on the ImageNet-
21k dataset. On the FMD task, the ImagetNet-21k pre-training similarly yielded the
highest accuracy (92.88% balanced, 94.0% absolute accuracy). Again, the ViT MAE B
model pre-trained on radiographs outperformed the randomly initialized ViT-B (57.99%
vs. 46.88%), but also did not match the performance achieved through ImageNet-21k pre-
training. On the FRAC task however, the ViT MAE B model pre-trained on radiographs
achieved the best balanced accuracy (58.46%), outperforming the ImageNet-21k pre-
training (56.86%), as well as the randomly initialized ViT-B (50.0%). A direct comparison
of the performances on the downstream tasks is given in Table 4.2.

Table 4.2: Direct comparison of the downstream task performance of the randomly
initialized ViT-B model without any pre-training, the ViT-B model pre-trained
on the ImageNet-21k dataset, and our ViT MAE B model pre-trained on
radiograph data. The reported values are balanced accuracies on the test set.
Values in parentheses are the absolute test set accuracies, without balancing.

Downstream Task ViT-B ImageNet-21k ViT-B ViT MAE B

ARC 56.89% (65.71%) 92.21% (93.57%) 73.57% (82.86%)
FMD 46.88% (60.00%) 92.88% (94.00%) 57.99% (68.00%)
FRAC 50.00% (65.35%) 56.86% (59.41%) 58.46% (62.38%)
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5.1 Discussion of Results

Our results demonstrate that pre-training in general significantly improves downstream
task performance in settings with minimal labels. Moreover, domain-specific radiograph
pre-training further improves performance upon vastly more extensive general pre-
training in specialized and complex downstream tasks.

The strong performance of ImageNet-21k pre-training on the ARC and FMD tasks
suggests that the ability to discern general visual features obtained during extensive
ImageNet-21k pre-training benefit the model in such tasks, where discriminatory features
are typically large and easy to identify. The increased performance of radiograph pre-
training on the FRAC task, on the other hand, suggests that on tasks relying heavily on
a deeper understanding of the domain and demanding a higher focus on fine-grained
medical details, domain-specific pre-training is increasingly beneficial.

Comparing the amount of training data and training iterations used for both types
of pre-training supports this hypothesis. For example, during ImageNet-21k pre-
training, the model was trained for 90 epochs on 14 million images showing a wide
range of subjects, resulting in 1.26 · 109 training iterations1. This scale and diversity of
training data provided the model with a broad range of visual features to learn from,
allowing it to generalize well to other tasks that can be solved by a good general visual
understanding. In contrast, our model was trained for ten epochs on 600,000 radiographs,
resulting in 6 · 106 training iterations, amounting to roughly 5% of total training samples
and 0.5% of total training iterations compared to the ImageNet-21k pre-training. Due to
this considerable disparity in pre-training volume, it might be worthwhile to explore
how an even larger radiograph pre-training influences the obtained results.

5.2 Conclusion

The primary goal of this work was to facilitate the utilization of large-scale medical
imaging datasets and tackle the labeling bottleneck in medical imaging. Our aim was
to explore the potential of employing SSL techniques on this task by pre-training a
ViT MAE on our large-scale real-world clinical dataset and evaluating the pre-trained
model on several clinical downstream tasks.

Our results show that MAEs can effectively capture and extract the fine-grained fea-
tures essential for solving complex medical imaging tasks. Specifically, we demonstrated

1Without considering the additional ImageNet-1k fine-tuning.

31



5 Discussion & Conclusion

that our ViT MAE pre-trained on radiograph data achieved a superior performance com-
pared to a baseline supervised ViT in low-data scenarios on all three tested downstream
tasks, namely anatomical region classification (ARC), foreign material detection (FMD),
and fracture detection (FRAC). Furthermore, the ViT MAE pre-trained on radiograph
data yielded an increase in accuracy on the FRAC task compared to a more general pre-
training on ImageNet-21k, despite being trained on only 5% of training samples and for
only 0.5% of training iterations. This finding highlights the potential of domain-specific
pre-training in the medical imaging domain.

Additionally, we provide several technical contributions to significantly improve
training efficiency and lower computational costs for large-scale training on real-world
medical imaging datasets. Our proposed Dynamic Batch Binning (DBB) strategy enables
efficient training on image datasets with a high variability in image resolutions, saving
roughly 80% of operations, compared to a naive fixed-size resolution approach.
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6 Further Research

Our research generated numerous conceptual insights and potential directions for further
experiments. We also faced several challenges and encountered certain limitations we
did not yet fully resolve.

6.1 Engineering Challenges

We faced several engineering challenges, mostly concerning the pre-training task and
mainly due to the large-scale, real-world nature of our data.

For example, because of the large amount and high resolutions of the images in our
dataset, it was not possible to store the whole 5.5 TB of training data locally during
pre-training. Therefore, we had to stream the data from a NAS during training, slowing
down data loading by a factor of about 30-40×, which hindered us from achieving a high
GPU utilization, making our optimizations with regards to computational efficiency
and faster training speeds largely theoretical rather than practical. We tested various
alternative formats for storing the data, comparing conversion time, space efficiency and
opening speeds. Nevertheless, the true bottleneck of NAS access speed was not easily
resolved by any of our attempts.

Furthermore, training on large and variable resolution images introduced several
challenges at once. We successfully solved the challenge of training without using
excessive padding by introducing the aforementioned DBB strategy and bilinearly
interpolating the positional encodings. However, the changes in input sizes across
batches led to PyTorch repeatedly recompiling the model during the first forward passes
when training a compiled model. This was not easily resolved by passing an initial
batch of maximum resolution images through the model when starting the training.

Training on extraordinarily high resolutions presented us with several trade-offs with
regards to accuracy, efficiency and memory constraints, for example between possible
patch sizes, intermediate and hidden sizes, batch sizes and masking ratios. Using
gradient accumulation, we could alleviate the limitation of a maximum possible batch
size.

6.2 Further Research

Investigation of Scaling Behavior with Increased Computational Resources. While
our pre-trained ViT MAE model demonstrated strong performance on the FRAC task
and showed good results on the other two tasks in the low data regime, an extended
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6 Further Research

pre-training period could further enhance these results. Particularly the comparison
with the superior results achieved by general ImageNet-21k pre-training on the more
general downstream tasks of ARC and FMD, as well as the disparity of pre-training
volume compared to ImageNet-21k pre-training, indicate the potential benefits of an
even more extensive radiograph pre-training. Future research could explore training
for additional epochs, potentially closing the gap to ImageNet pre-training on tasks
depending mostly on a good general visual understanding and perhaps also further
improving the lead on domain-specific tasks like FRAC.

Comprehensive Exploration of Hyperparameters and Associated Trade-offs. There
are several pre-training hyperparameters we would like to test in more depth, for
example comparing how downsampling the pre-training data affects downstream task
performance of the pre-trained model. Another hyperparameter we would like to tune
in more detail is the ViT MAE’s masking ratio. Although we tested multiple patch
sizes for the ViT MAE model, we would like to conduct more experiments on this
hyperparameter as well, potentially even running the whole pre-training / fine-tuning
pipeline on models of various patch sizes, to determine whether a higher resolution of
patches helps the model improve downstream tasks performance.

All of these experiments focus on the trade-off of efficiency, compute and memory
constraints with information passed through the model.

Label Scarcity in Medical Imaging. Another promising solution to the problem of
label scarcity in medical imaging is to generate pseudo-labels. As there are radiologist
reports accompanying a subset of the radiographs in our dataset, one approach to
generate such pseudo-labels could be to use simple techniques like regular expressions
for extracting high-probability ground truth labels from these reports. These high-
probability ground truth labels could be checked more cheaply by radiologists than
generating labels from scratch.

Building upon these high-probability ground truth labels, NLP techniques could be
employed to extract further labels from the reports. There are several viable routes,
like first translating the German reports to English using a (medical) translation model
and subsequently using an English medical NLP model like e.g. RadBERT [Yan+22],
fine-tuning a model like BERT [KT19], or even testing few-shot or zero-shot performance
of a general large language model like e.g. Llama 3 [Dub+24]. The previously extracted
high-probability ground truth labels could serve as a foundation for fine-tuning or
evaluating the produced NLP pseudo-labels. Using or training a German end-to-end
model is also possible, but we believe the outlined approach to be superior, as translation
models have become highly effective and English models typically outperform German
ones due to more extensive training data and greater research focus. Furthermore,
medical root words are often similar in German and English.
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6.2 Further Research

Additional Research Directions. Given the high-resolution nature of the images in
our dataset, exploring specialized variants of the ViT MAE, such as the Swin MAE
architecture, or alternatives like I-JEPA, could be another promising direction for further
research.

Another aspect of training on medical data like radiographs, which further research
could focus on, is employing local-global training strategies, e.g. as was used in [Val+21],
allowing Transformers to operate on the whole image for global features and focus on
single patches for local features at the same time.

35





List of Figures

2.1 ViT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 ViT MAE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 MRI Dataset: Histogram of Anatomical Regions . . . . . . . . . . . . . . . 11
3.2 MRI Dataset: Raw Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 MRI Dataset: Histograms of Radiograph Resolutions . . . . . . . . . . . . 14
3.4 ViT MAE: Patch Size and Masking Ratio . . . . . . . . . . . . . . . . . . . 16
3.5 Fine-tuning: Foreign material detection (FMD) Data . . . . . . . . . . . . . 21
3.6 Fine-tuning: Fracture detection (FRAC) Data . . . . . . . . . . . . . . . . . 22
3.7 Fine-tuning: Data Augmentations . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 ViT MAE: Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

37





List of Tables

3.1 MRI Dataset: Anatomical Regions . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Model Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Pre-training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Fine-tuning: Class Distributions for Downstream Tasks . . . . . . . . . . . 23
3.5 Fine-tuning: Training Configurations . . . . . . . . . . . . . . . . . . . . . 26

4.1 Computational Efficiency of Different Batching Strategies . . . . . . . . . 28
4.2 Results: Downstream Task Performance . . . . . . . . . . . . . . . . . . . . 30

39





Bibliography

[Ass+23] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y.
LeCun, and N. Ballas. “Self-Supervised Learning from Images with a Joint-
Embedding Predictive Architecture.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2023, pp. 15619–15629.

[Bey+23] L. Beyer, P. Izmailov, A. Kolesnikov, M. Caron, S. Kornblith, X. Zhai, M.
Minderer, M. Tschannen, I. Alabdulmohsin, and F. Pavetic. “FlexiViT: One
Model for All Patch Sizes.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 14496–14506.

[Che+20] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A Simple Framework for
Contrastive Learning of Visual Representations.” In: International Conference
on Machine Learning. PMLR. 2020, pp. 1597–1607.

[Dai+23] Y. Dai, F. Liu, W. Chen, Y. Liu, L. Shi, S. Liu, Y. Zhou, et al. “Swin MAE:
Masked Autoencoders for Small Datasets.” In: Computers in Biology and
Medicine 161 (2023), p. 107037.

[Deh+24] M. Dehghani, B. Mustafa, J. Djolonga, J. Heek, M. Minderer, M. Caron,
A. Steiner, J. Puigcerver, R. Geirhos, I. M. Alabdulmohsin, et al. “Patch
n’pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution.”
In: Advances in Neural Information Processing Systems 36 (2024).

[Den+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A
Large-scale Hierarchical Image Database.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE. 2009, pp. 248–255.

[Dos+21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” In: International Conference on Learning Representations.
ICLR. 2021.

[Dub+24] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A.
Mathur, A. Schelten, A. Yang, A. Fan, et al. “The Llama 3 Herd of Models.”
In: arXiv preprint arXiv:2407.21783 (2024).

[HA15] W. Huda and R. B. Abrahams. “X-Ray-Based Medical Imaging and Resolu-
tion.” In: American Journal of Roentgenology 204.4 (2015), W393–W397.

41



Bibliography

[He+22] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. “Masked Au-
toencoders are Scalable Vision Learners.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE. 2022, pp. 16000–
16009.

[Juy+24] D. Juyal, H. Padigela, C. Shah, D. Shenker, N. Harguindeguy, Y. Liu, B.
Martin, Y. Zhang, M. Nercessian, M. Markey, et al. “PLUTO: Pathology-
Universal Transformer.” In: arXiv preprint arXiv:2405.07905 (2024).

[KT19] J. D. M.-W. C. Kenton and L. K. Toutanova. “Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding.” In: Proceedings of
NAACL-HLT. Vol. 1. 2019, p. 2.

[Leh+03] T. M. Lehmann, H. Schubert, D. Keysers, M. Kohnen, and B. B. Wein. “The
IRMA code for Unique Classification of Medical Images.” In: Medical Imaging
2003: PACS and Integrated Medical Information Systems: Design and Evaluation.
Vol. 5033. SPIE. 2003, pp. 440–451.

[LH19] I. Loshchilov and F. Hutter. “Decoupled Weight Decay Regularization.” In:
7th International Conference on Learning Representations. 2019.

[Liu+21] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. “Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 10012–10022.

[Liu+22] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L.
Dong, et al. “Swin Transformer V2: Scaling up Capacity and Resolution.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 12009–12019.

[Nat24] National Electrical Manufacturers Association. NEMA PS3 / ISO 12052,
Digital Imaging and Communications in Medicine (DICOM) Standard. http:
//www.dicomstandard.org/. 2024.

[Pas+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. “Pytorch: An Imperative Style, High-
performance Deep Learning Library.” In: Advances in Neural Information
Processing Systems 32 (2019).

[Sud+17] C. H. Sudre, M. J. Cardoso, S. Ourselin, A. D. N. Initiative, et al. “Longitudi-
nal Segmentation of Age-related White Matter Hyperintensities.” In: Medical
Image Analysis 38 (2017), pp. 50–64.

[Val+21] J. M. J. Valanarasu, P. Oza, I. Hacihaliloglu, and V. M. Patel. “Medical
Transformer: Gated Axial-Attention for Medical Image Segmentation.” In:
Medical Image Computing and Computer Assisted Intervention. 2021, pp. 36–46.

[Var+24] A. Varma, S. Shit, C. Prabhakar, D. Scholz, H. B. Li, D. Rueckert, B. Wiestler,
et al. “VariViT: A Vision Transformer for Variable Image Sizes.” In: Medical
Imaging with Deep Learning. 2024.

42

http://www.dicomstandard.org/
http://www.dicomstandard.org/


Bibliography

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention Is All You Need.” In: Proceedings of
the International Conference on Neural Information Processing Systems. NeurIPS.
2017, pp. 6000–6010.

[Wan+17] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. “ChestX-
ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-
Supervised Classification and Localization of Common Thorax Diseases.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2017, pp. 2097–2106.

[Wol+23] A. Wollek, S. Hyska, B. Sabel, M. Ingrisch, and T. Lasser. “Higher Chest
X-ray Resolution Improves Classification Performance.” In: arXiv e-prints
(2023), arXiv–2306.

[Xin+23] X. Xing, G. Liang, C. Wang, N. Jacobs, and A.-L. Lin. “Self-supervised
Learning Application on COVID-19 Chest X-ray Image Classification using
Masked Autoencoder.” In: Bioengineering 10.8 (2023), p. 901.

[Yan+22] A. Yan, J. McAuley, X. Lu, J. Du, E. Y. Chang, A. Gentili, and C.-N. Hsu.
“RadBERT: Adapting Transformer-based Language Models to Radiology.”
In: Radiology: Artificial Intelligence 4.4 (2022), e210258.

[Zho+23] L. Zhou, H. Liu, J. Bae, J. He, D. Samaras, and P. Prasanna. “Self Pre-
training with Masked Autoencoders for Medical Image Classification and
Segmentation.” In: International Symposium on Biomedical Imaging. IEEE. 2023,
pp. 1–6.

43


	Abstract
	Contents
	Introduction
	Background & Related Work
	Transformer-based Models
	Self-supervised Learning in Medical Imaging
	Training on High-resolution and Variable-resolution Images

	Method
	Data and Preprocessing
	Rechts der Isar Hospital Radiograph Data
	Data Preprocessing

	Models
	Vision Transformer Masked Autoencoder
	Vision Transformer

	Training
	Training on Variable-resolution Images
	Pre-training Strategy
	Fine-tuning Strategy
	Training of Baseline Models


	Results
	Impact of Dynamic Batch Binning on Computational Efficiency
	Impact of Pre-training on Downstream Task Performance

	Discussion & Conclusion
	Discussion of Results
	Conclusion

	Further Research
	Engineering Challenges
	Further Research

	List of Figures
	List of Tables
	Bibliography

